The mission Gaia of the European Space Agency

Alex Lobel Royal Observatory of Belgium

What is Gaia all about ?

- ESA cornerstone mission for research of the Galaxy.
- Astrometric satellite; successor of Hipparcos 1990-93. Includes optical photometry to 20th mag. & spectroscopy
- 5+5 years of observations with production of Gaia catalog.
- Astronomers involved in production of Gaia catalog.
- What does Gaia teach us about the formation, structure and evolution of our Galaxy?

gaia Launch in Dec 2013

Kourou

Soyuz Sz-013

Wrapping up Gaia for shipping to Kourou

Getting ready for launch

Science with Gaia data

What do 1.8 billion stars in 3-D allow us to do? n our Milky Way, research of...

- Accurate distances and velocities of 1.8 billion stars
- Stucture and kinematics of the Milky Way disk, bar & halo
- Formation history of the Milky Way
- Foundation for star evolution theories, chemical composition
- large-scale census of asteroids
- census of binary stars, variable stars, exoplanets
- study of dark matter in the Milky Way

... and far beyond our Milky Way...

- standard candles for measuring distances beyond Magellanic clouds
- zero-point calibration of abs. distance scale, PL calibration Cepheids
- quasar detections & variability, definition of celestial reference frame
- census of galaxies with accurate red-shifts

Gaia in the second Lagrange point L2

Gaia rotates around its axis, scans the sky

Simulated Gaia sky - Robin et al., arXiv:1202.0132

Gaia scans the complete sky

Gaia scans optical sources several times

Map of amounts of Gaia scanning observations during 5 years

NSL field transits after 5 years in: Galactic coordinates

- Observes about 1.8 billion stars on average 70 times to G = 20 mag.
- Astrometry with blue & red photometry of each source.
- Astrometric accuracy in final catalog to ~10 μ arcsec (G < 15 mag.)

Gaia's CCD detectors

Different CCDs for different types of observations

106 CCDs \cong 938 million pixels

The Billion Star Surveyor

Gaia observations

in 1 minute 100,000 stars are being observed

Position and brightness of 1.1 billion stars

Position and brightness of 1.7 billion stars

Map of star colors with 1.3 billion stars

Map of star colors with 1.3 billion stars

Credit: Lund Observatory, Sweden

2018

Rho Ophiuchi complex

Small Magellanic Cloud

Large Magellanic Cloud

Number of stars and objects in Gaia's Third Data Release

GAIA EARLY DATA RELEASE 3

1 811 709 771 stellar positions

1 806 254 432 brightness in white light

1 542 033 472 brightness in blue light

1 540 770 489 colour

1 467 744 818 parallax and proper motions

#SpoceCare #ExploreFarther

1 614 173 extragalactic sources 1 554 997 939 brightness in red light

eesa

Online public Gaia Data Archive

https://gea.esac.esa.int/archive

Map of star density

users can interactively pan and zoom in

Omega Cen globular cluster

Zoom in on individual stars

Stellar parallax measurements by Gaia

Parallax: 3.26 " Distance: 1.0 lightyear

Large proper motion of Barnard's star

1985

Parallax and proper motion with Gaia

Parallax and proper motion from Gaia

Stellar proper motion tracks observed by Gaia

Map of distances to stars measured by Gaia

Gaia's unparalleled astrometric accuracy

Most accurate parallax measurements: 10 micro arc seconds

1 arc second = 1 / 3600 degrees = $4,8 \times 10^{-6}$ radians

- -> 10 % uncertainty for distance of 32,000 light years
- -> Displacement of Barnard's star during 30 seconds
- -> Apparent size of 100 CLP coin on the Moon seen from Earth

Accuracy of distances reduces farther away

Accuracy of Gaia parallax measurements

Gaia limit for reliable distances: 10 Kpc. Compare this to 100 pc for Hipparcos mission.

Rotation of the Galaxy

Structure of spiral arms in the solar neighborhood

Structure of spiral arms in the solar neighborhood

Spatial distribution of young and old stars

Dust & gas in the Milky Way

Map of dust & gas based on star colors and distances

Gaia Radial Velocity Spectrometer

Gaia's spectrometer in the near-IR

Design: R=11,500

0.0245 nm/pixel

Sky map of stellar radial velocities

Radial velocities combined with proper motions

Rotation of the Galaxy and movement of the Sun relative to the stars

Motion of the Sun through the Milky Way plane

Radial velocities combined with proper motions

Rotation of the Galaxy and movement of the Sun relative to the stars

Accurate map of star densities around Galaxy center

Accurate map of radial velocities around the center

Tangential velocity structure of galactic rotation

Radial velocity structure of galactic bar rotation

Tangential velocity map

Radial velocity map

Gaia Collaboration, A&A 2022

Radial velocity structure of galactic bar rotation

Tangential velocity map

Radial velocity map

Gaia Collaboration, A&A 2022

Radial velocity structure of galactic bar rotation

Tangential velocity map

Radial velocity map

Gaia Collaboration, A&A 2022

Gaia phase spirals across the Milky Way plane

- Phase spirals are observed everywhere in the plane of the Milky Way
- Revealing that star movements seek equilibrium from non-equilibrium

Position and brightness of 1.7 billion stars

Sagittarius Dwarf Galaxy

Motion of dwarf galaxies and globular clusters

- dwarf galaxies do not move in the same plane but there is some degree of coherence (groups fall in along filaments)
- globular clusters exhibit more random motion but sometimes in pairs

Repeated collisions of the Sagittarius dwarf galaxy with the plane of our Milky Way

> Sagittarius Dwarf Galaxy

> > Milky Way

Sagittarius stellar stream in the Milky Way halo

Narrow tidal stellar streams in the Milky Way halo

Narrow tidal stellar streams in the Milky Way halo

Extra-galactic stellar streams

Gaia map of photometric colors of stars

Gaia map of photometric colors of stars

Field stars within 200 pc with low interstellar reddening

Gaia 4 million stars

Hipparcos 20,000 stars

diagrams of tangential velocities

stars in halo show double main sequence due to difference in metal content [Fe/H] = -1.5 & -0.5

150

300

usands of

light years)

-150

V_v [km/s]

diagrams of tangential velocities

Gaia-Enceladus major merger event with the Milky Way disk of 8 to 11 billion years ago

Gaia color-magnitude diagram of white dwarfs

Differentiation between H- en Herich white dwarfs

Gaia color-magnitude diagram of white dwarfs

Gaia Hertzsprung-Russell diagram

Types of pulsating stars in H-R diagram

Types of pulsating stars in H-R diagram

Variable stars in the H-R diagram

- Many different types of variable stars in the H-R diagram.
- Cyclic changes in photometric G magnitude and colors (Bp Rp).
- Cepheids are important for reliable distance measurements.

Spectral series of stars around the Ca II triplet

Effects of temperature: A to M types

Effects of metal content in G-type stars

Spectral series of stars around the Ca II triplet

Different spectral line strenghts are observed due to different metal content [Fe/H] and α -elements in stellar atmospheres

Astrophysical parameters & chemical abundances

Chemical abundances and stellar ages

- Younger stars with larger metal content in the thin Milky Way disk (yellow & red).
- Older stars with lower metal content in the thick Milky Way disk and halo (blue).

RVS = Radial Velocity Spectrograph

Here we are using the metal abundances derived from the RVS to colour the stars.

Summary

- Gaia is causing a revolution in many research fields of astronomy and astrophysics.
- Preparations for the Fourth Gaia Data Release in 2026 are in full swing. DR4 release will cover 66 months of observations.
- Degradation of accuracy in star positions over the next few decades will require new astrometric missions: GaiaNIR?

All eyes on Gaia Data Release 4

All eyes on Gaia Data Release 4

* Space still contains infinite unknowns

Thank you for the invitation

