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Abstract. We discuss the significance of the adiabatic exponents
I';, T, and T'; and derive expressions for their calculation in
a stellar atmosphere including simultaneous single-ionization of
various elements and the presence of an equilibrium radiation
field. A discussion is given of the relation of I'y to dynamic
instability. It is shown that some parts of some Kurucz models
for extreme supergiant atmospheres are dynamically instable as
a result of ionization and radiation in the deeper layers.
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1. Introduction

In a gas at high temperature and low density, such as atmo-
spheres of supergiants where the density is of the order of 1078 g
cm™3, there are very little interactions between particles, and the
pressure P, number density n and temperature T are related by
the equation of state of a perfect gas. We consider a mixture of
various elements, each of which obeys this equation P; = nkT,
but in which »n; may change as a result of ionization. The equation
of state can be written,

Py = (1+ X)pNkT . 1)

We consider an enclosure of (specific) volume V, where V = ,l]
and p is the mass-density, at temperature T, containing N atoms.
In Eq. (1) x = Zi v;x; denotes the mean degree of ionization,
x; the degree of ionization of element i, and v; the element
abundance, where ) .v; = 1.

The mixture is assumed to be always in thermal and chemical
equilibrium. This requires the assumption that the sum of neutrals
and ions of each element remains constant (mass conservation),
besides the constancy of the element abundances.

We also include the effects of black-body radiation, and ne-
glect the effects of any interactions between gas and radiation. We
assume also a static medium, which means : no time-dependence
or hydrodynamic motions. The radiation pressure is given by
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Prg=3T*, @
where a is the radiation constant.

Free electrons from elements with low ionization potentials
will determine the ionization of hydrogen through the electron
density in the Saha equation. Therefore, certain species of atoms
can be very significant in stellar atmospheres even though their
abundance is very low as compared to that of hydrogen. In
particular, variations in metallic abundance from one star to
another may have major effects on the physical state of the
material, especially its ionization equilibrium (Bowers & Deeming
1984). For this reason, we take the elements heavier than helium
also into account in the equation of state. On the other hand, we
will restrict our calculations only to single ionization.

2. Adiabatic exponents

Generalized adiabatic exponents I';, I, and I'; are useful for the
study of adiabatic processes in an ionizing gas. They are related
to the behaviour of thermodynamic systems under infinitesimal
adiabatic changes. These changes are isentropic (entropy S is
constant) and hence reversible. In adiabatic sound waves, the
temperature of the elementary volumes (typical one wavelength)
changes accordingly with the variation in pressure as a result of
the change in the density of matter. Another important feature
of adiabatic processes is that all forces are conservative (absence
of dissipative effects such as viscosity).

In sufficiently simple physical systems (i.e. non-ionizing per-
fect gases) , the ratio of specific heats equals I'; (Cox & Giuli
1968), where

dlnP C,
= =2 3
! (01np)s CDX’” @)

and y, = 1 (density exponent, which is related to the coefficient of
adiabatic compressibility of the gas). It is of importance to notice
that Eq. (3) results from a general relation in thermodynamics
that relates thermodynamic properties (ratio of specific heats)
with mechanical properties (ratio of isothermal and adiabatic
compressibility) of the system, and which is given by

Cp KT

zr _ T 4
C s’ 4
where

_(dlnp _(0dlnp
o= (W), = (), .
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are the coefficient of isothermal and adiabatic compressibility,
respectively (Mihalas & Mihalas 1984).

The gammas are important for the study of stellar interiors.
I'; is important in connection with dynamical instability of stars.
The second adiabatic exponent is related to the differentials of
state variables by the definition

., _[(émP\ G
r2—1=(alnT>s‘cp—chT’ ©

where y; is the temperature exponent. I', is important in con-
nection with convective instability in stars. The third adiabatic
exponent is defined by '

olnT C,—Cy 1
—1= =2 _=2 7
1= (5a) -Sz502, 0

and is important in connection with pulsational instability of
stars.

In the case of a simple perfect gas with constant mean molec-
ular weight u, all gammas are the same and equal to the ratio of
specific heats (% for a monoatomic gas) because y, = y; = 1.

When black-body radiation is also included Ty > I'y; > T,
and all of them vary between % and ‘3‘. For monoatomic gas,
Iips = %, while for pure radiation I'j 53 = %. Without ionization,
the density exponent y, = f (Chandrasekhar 1939) and the
temperature exponent y; = 4 — 3§, where

P, gas
P, gas + P, rad

B ®

Now, considering a gaseous mixture with simultaneous ion-
ization of the various elements and equilibrium radiation, Miha-
las 1965 derived expressions for the specific heats, which take into
account these various abundances. In order to calculate the gam-
mas (and also the local speed of sound), we derived expressions
for the density and temperature exponent, for this system;

_ 61nP> _/3(562+5C+Zivixi(1—xi)) )
PE\Em ), T D R+ (—x)
and

_(émpP\ Bx Y vixi(1—x)(3 + &)
r = (61nT>p =@=3p+ T+3E+ Y, vixi(l —x))’ (10

where y; denotes the first ionization potential of each element.
These expressions reduce to those of Cox & Giuli 1968 for a
gas consisting of one ionizing element with radiation. It is also
possible to derive more general expressions for C,, Cy, %, and yr,
including different stages of ionization for a mixture of various
elements (for which it can be shown that they reduce to Mihalas’
expressions for C, and C, and the y, and y; here presented).
Figure 1 shows that I'; and I'; — 1 reach a local minimum,
nearly at the temperatures corresponding to 50 per cent ioniza-
tion of H and He. The first local minimum is the result of the H
ionization and the second of the He ionization. The curves pre-
sented here are calculated using solar abundances for 16 elements
H, He, C, N, O, Ne, Na, Mg, Al Si, S, Ar, K, Ca, Cr and Fe.
The abundances were taken from Allen (1973). Partition func-
tions at various temperatures were derived according to methods
developed by Claas (1951) and Baschek, Holweger and Traving
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Fig. 1. Generalized adiabatic exponents I'y and I'; — 1 with ionization
only, for three different electron pressures: (1) P, = 0.1, (2) P. = 1.0, (3)
P, =200

(1966). The mean molecular weight of unionized cosmic material
(10=1.26) follows from the abundances.

In an ionization region the mean molecular weight u =
#i5 is approximately halved because the released ionization-
electrons double the total amount of free particles, assuming
single-ionization. In this region, most of the work of compression
is transformed into ionization energy, rather than into kinetic
energy of thermal motion, so that the temperature will increase
less upon compression than it would in a neutral or fully ionized
zone.

From the principle of energy equipartition for perfect gases
without radiation, it is shown that

(11)

where r = 2 for a non-relativistic gas, and r = 1 for a fully
relativistic gas. For three-dimensional non-relativistic gases, with
the degree of freedom f = 3, it follows that I'; ~ %, and for a
fully relativistic gas I'y ~ ‘5‘ (outside the ionization regions x, ~
1 in Fig. 3). In the hydrogen ionization zone of Fig. 1, I'; drops
to very close near unity which corresponds to a large value of f.
When f — oo, physically, this would correspond to the situation
for which all energy added to the system goes into ‘internal’ (i.e.
ionization, rotation, vibration, etc.) forms of energy and none into
kinetic energy.

In absence of radiation it follows from Eq. (8) that f=l1,
and for this situation of simulateous single-ionization of various
elements, we find that 0.89 < y, < 1 (Fig. 3). In this case, the
ratio of specific heats stays always enough above 1 to give for
the product with y, a value for I'; above unity.

3. Behaviour of I, when including equilibrium radiation

The sudden decrease of I'; in an ionization region is caused by
the low pressure gradient as compared to the density gradient
there. This results from energy going into ionization, while the
kinetic energy, and hence the gaspressure, increases much less
than when compared to the situation outside this region. Upon
further compression, without ionization, the pressure gradient
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will raise again, because all added energy returns back into the
kinetic energy of ions and released electrons. Hence, the adiabatic
compressibility kg will decrease again.

However, when including equilibrium radiation, things
change. Radiation is more compressible than pure gas with the
same pressure and temperature. This is because a change of the
specific volume upon compression will cause a much smaller
temperature-increase for radiation than it would cause for a gas
under the same conditions. Since the radiation pressure only de-
pends on the temperature in Eq. (2), the change in this pressure
will be accordingly smaller.

Suppose now that the radiation pressure becomes comparable
to the gas pressure in an ionization region. The temperature
changes little upon compression until the ionization is over, but
at that moment the radiation is preventing the total pressure
to increase again while the compression goes on. So, in Eq. (3)
the density gradient is much larger as compared to the gradient
in the total pressure, than it would be if radiation were absent.
Consequently, I'; can drop to a lower value than in the absence
of radiation. (Also notice in Fig. 3 that y, — 0 when the radiation
pressure becomes more important than the gas pressure, or f —
0). This effect can be seen in Fig. 2 where I'y can even drop to
below 1 in certain ranges of electron pressure and temperature. We
stress that this is only a result of the combination of radiation
and ionization, in a certain range of P, and T -values. The effect
appears for 0.1 cﬂﬁ < P, <200 gﬂ% and 6100 K < T < 9000 K
in the hydrogen 1onization region for solar abundance. We find
a minimum value of 0.84 for I';.

2.0 . . : ; : . : :

15 + 1
h . ———

‘]. L

0 (1) (3)
(2)

0.5} .

f3-1 (1)
(3)
. L@ 7 . . , . .
4000 8000 12000 16000 20000
Temp.(K)

Fig. 2. Generalized adiabatic exponents I'y and I'3 —1 with ionization and
equilibrium radiation, for three different electron pressures: (1) Pe = 0.1
(2) Pe =1.0, (3) P. =200

>

For a perfect gas, this would correspond to the somewhat
surprising situation of a negative polytrope, because then n < 0
in

1+1= OlnP -1
n olnp J

However, when partial ionization or radiation is included, it is
shown (Cox & Giuli 1968) that expression (12) has to be replaced
by

12)
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1+ ne
I' = —_ 1
1 Xp(1+ne_XT), (3)
where n. is now called the ‘effective polytropic index’. In Fig. 3 we
calculate n, from Eq. (13) as a function of the temperature with

an electron pressure of 1.0 gn%. Here, n, always remains positive,
even in the region where I'; has values below unity (Fig. 2).
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Fig. 3. Density exponent y, (with equilibrium radiation (1) and without
(2)) and temperature exponent ;. (with radiation (3) and without (4))
as a function of the absolute temperature, in the case of an ionizing gas
where P, = 1.0. (5) shows the effective polytropic index n, when including
radiation

4000 8000

4. T'; in relation to atmospheric dynamical instability

Radial adiabatic oscillations about a mean state of hydrostatic
equilibrium with conservation of mass can be described by a
linear second order differential equation : the Linear Adiabatic
Wave Equation (LAWE). It describes a differential equation for
a radial displacement ‘37’ caused at a point r by perturbations
under certain boundary conditions ( ér vanishes at the centre of
the star and 0P vanishes at the surface). It is assumed that its
standing wave solutions are of the form {(r,f) = 5,—’ = &(r)e”,
where £(r) is a function of r only and ¢ is a constant.

The simplest solution for this equation is given when as-
suming adiabatic motion of the fundamental mode of radial
oscillation. When ¢ # 0, the perturbation has an oscillatory part
for either sign of . This mode represents the case where pertur-
bations vanish at the centre and reach maximum values at the
surface. It has the smallest eigenvalue 62 of an infinite discrete
set a2 corresponding to the eigensolutions &;.

Assuming a homologous motion with £(r) constant, it can be
shown (Ledoux 1965) that

_ [R@T —43PaV _
j:)M r2dm

4 31Q|
<F1_§>T’

2

o (14)

where I is the generalized moment of inertia with regard to
the centre of the star,| Q | the gravitational potential energy in
its equilibrium state, P the unperturbed pressure and I’y is a
function of the position in the star.
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When o3 > 0 the system is stable because 2 does not grow
with time. Stability will depend on the volume-averaged value of
I';, and vanishes when this average I'; < ‘—3‘ or a2 <0.

In extensive ionization zones of stellar evelopes, I'; falls be-
low % through a significant part of the atmosphere (see next
paragraph). Hence, local dynamical instabilities in atmospheric
layers may result from H and He ionizations. Ledoux 1965 found
that regions where I'; < % and decreases with increasing radius,
have a destabilizing influence. Regions where I'j < % and in-
creases with increasing radius, have a stabilizing influence. If T

is higher than %, the effects of its variations are reversed.

In parts of the atmosphere where I'; > % and the layers are
contracting under a disturbance, its potential energy becomes less
negative and is mainly transformed into kinetic energy of the par-
ticles (and partly radiated because of the increasing temperature).
This leads to a counterworking pressure (low compressibility) that
tries to restore the equilibrium of the layer.

Conversely, when I'} < % in a layer, the potential energy is
mainly transformed into ‘internal forms of energy’ (i.e. ionization
energy, dissociation energy of molecules), without increasing the
pressure to stop the contraction. This means that for an arbitrary
displacement of atmospheric layers from equilibrium, there are
forces which tend to push them still further from equilibrium.
These forces, that act on a mass shell, when it is displaced
from equilibruim, are determined not only locally, but also by
conditions in the entire star. It therefore follows, for example,
that in some region where I'; is less than ‘3‘, this mass shell will
still be dynamically stable if the whole star is stable or a3 > 0
(Cox 1980). This means that it will experience positive restoring
forces if displaced from equilibruim. In that case, pulsational
driving can occur from the y-mechanism because I's — 1 has very
low values in these regions (Fig. 1). This driving is produced
by recombination on decompression that releases the ionization
energy (Cox & Cahn 1988).

The destabilizing mechanism in the H- and He-ionization
zones is considered here because Dziembowski 1977 concluded in
his theoretical studies that non-radial oscillations could be excited
in the envelopes of several kinds of stars, by the same envelope
ionization mechanisms that are responsible for the pulsations of
the Cepheids and RR Lyrae variables. From an investigation
of a supergiant model for « Cygni (log T,;=3.96, logg=1.1) he
found that this model is overstable to high-1 non-radial p-mode
oscillations. Lower-1 modes were excited in a cooler supergiant,
lying close to the Chepeid instability strip. Ando 1976 performed
numerical calculations for non-radial p-modes (I > 10) in the
envelope of four supergiant models (T,; < 6500). He found that
high-order p-modes (k > 5) cannot be trapped because the acous-
tic cut-off frequency is low, resulting from the large atmospheric
scale height relative to the stellar radius. The stability of these
eigenmodes strongly depends on the position of the driving ionza-
tion region below the outermost node of the p-modes. De Jager,
de Koter, Carpay & Nieuwenhuijzen 1990 concluded that grav-
ity waves in supergiant atmospheres are fairly high-mode waves.
Also from observations of early-type supergiants there appears
to be an indication that these stars are non-radial pulsators (for
references see de Jager 1990).

5. Application to the Kurucz models

On the basis of the considerations in Sects.2 and 4, we want to
determine whether parts of the atmosphere of the Kurucz mod-

els 1979 for extreme supergiants are dynamically stable agianst
compression or rarefaction.

We calculated with Eq. (3) and Eq. (9) the variation of the
stability parameter I'; throughout the atmospheres of various
Kurucz models. Taking only gas pressure into consideration and
increasing the temperature from 5500 K to 8000 K, while choos-
ing for the log g -value the lowest possible present in the tables,
Fig. 4 shows that I'; is gradually decreasing in the outer parts
of the atmosphere. This is caused by the hydrogen ionization
region which is moving outwards at higher temperatures. The
first ionization region of He is also visible in the deeper layers,
as is shown by the sudden decrease of I';. This minimum is less
deep because of the lower abundance of He.

2.0 T T T T T

Te= 5500 log G = 0.0
08F Te=7000 logG=10 --------- ]
Te= 8000 logG=10 ————
i 1 L 1 ! 1 1
—L -3 -2 -1 0 1 2
Log Tross

Fig. 4. I'; throughout the atmospheres of extreme supergiants for three
different effective temperatures, using Kurucz models with solar abun-
dance. Only a single-ionizing gas is considered

When further increasing the effective temperature to 13000
K, as is shown in Fig. 5, T'; increases again in the outer parts
of the atmosphere, which indicates that all hydrogen is already
ionized at the surface. From this graph it can be seen that the
He ionization region is moving outwards with increasing effective
temperature.

In Fig. 6 the effective temperature is increased further to
20000 K. At the temperatures of 14000 K and 15000 K we find
that the region of single ionization of He is extending very rapidly
towards the surface. He ionization appears to drop I'; to below
% in a large part of the atmosphere, comparable to the effect of
the ionization of H at lower effective temperatures. The effective
temperature has to be increased up to 20000 K to find I'; -values
above % over the whole atmosphere. In these atmospheres H and
He are completely singly ionized.

From this we can conclude that parts of the Kurucz models
with lowest gravitational acceleration show an enhanced sensi-
tivity to atmospheric dynamical instabilities. This is caused by
H ionization for models between 7000 K and 12000 K, and by
single He ionization for model atmospheres between 15000 K
and 20000 K.

The question if these models are unstable can only be an-
swered by evaluation of Eq. (14). At large optical depths (log
Tross > 0) T'1 > %, and since the pressure is high there, this can
give a large contribution to the integral of Eq. (14). Consequently,
it will reduce the instability of the atmosphere. However, when
radiation pressure is included in the calculations, it appears from
Fig. 7 that in the deeper layers I'; decreases to a value close to %,
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Fig. 5. I'; throughout the atmosphere of extreme supergiants, using Ku-
rucz models with solar abundance. Only a single-ionizing gas is considered
and effective temperatures between 10000 K and 13000 K
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Fig. 6. 'y throughout the atmosphere of extreme supergiants, using Ku-
rucz models with solar abundance. Only a single-ionizing gas is considered
and effective temperatures between 14000 K and 20000 K
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Fig. 7. I'y in the deeper layers of atmospheres for extreme supergiants,
using Kurucz models with solar abundance. The total effect of sin-
gle-ionizing gas and black-body radiation is considered, but notice that
the inclusion of the radiationterm is not correct for tress < 1
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which will increase the instability. This graph is not valid at low
optical depths because there the radiation cannot be treated as
black-body radiation. An equilibrium between gas and radiation
is then not possible.

We remark that the presence of a non-equilibrium radia-
tion field at very low densities makes the material non-adiabatic
(NLTE conditions) and thermodynamic quantities become mean-
ingless (Mihalas & Mihalas 1984). However, Ledoux & Walraven
1958, gave an extensive description of the stability theory applied
to atmospheric layers of supergiant variables (like n Aquila with
logg=1.0 and T,;=6000 K) where thermodynamic quantities as
T"; are considered at very low densities.

In a series of three articles by Hummer & Mihalas 1988;
Mihalas, et al. 1988; Dappen et al. 1988, a much more sophisti-
cated treatment of the thermodynamic properties of a partially
ionized multicomponent gas is developed for stellar envelopes. In
the third paper the thermodynamic quantities are calculated at
these low densities, and here also values for I'; are found to fall
below % in the thermal (single) ionization regions over the abso-
lute temperature regions of Fig. 4, 5 and 6. Here, it is indirectly
shown that the location of the ionization zones is pushed deeper
down in the atmosphere because their formalism explicitly deals
with excited states of H and He (Dappen 1988). This results in
an enhanced local instability of the deeper layers.

Notice in Fig. 7 that I'; can drop below 1, even at fairly
high optical depths (tg. ~ 1). When compared with Fig. 4, I'y
decreases from 1.1 to 0.9 as a result of the inclusion of black-
body radiation. This corresponds to a change AI'; >~ 0.1 (18 %)
which directly affects the freqencies of simple adiabatic radial
oscillations and the sound velocity.

Christensen-Dalsgaard & Thompson 1991 investigated the
effect of increasing the solar envelope abundance on I'y in the
He™-ionization region. Here, changes of AT} ~ 0.004 are found
to be significant for the helioseismic determination of the he-
lium abundance. This implies that a detailed knowledge of the
contribution of equilibrium radiation, at the basis of stellar at-
mospheres, is indispensible since AI'i=0.01 when it is only a
hundreth of the gas pressure (§=0.99).

Notice also the steep gradient in I'y which results from this
effect. It corresponds to a sudden increase in the compressibility
of the medium for sound waves moving outwards from a region
where hydrogen is fully ionized to a region where this ionization
takes place. On this edge the local velocity of sound suddenly
decreases since

2 E 1
Sad pl"l, (15)
(Landau & Lifshitz 1959) which enhances the origin of shock
waves.

6. Conclusions

There is a clear indication that the Kurucz atmospheric mod-
els for certain extreme supergiants are dynamically unstable in
certain ranges of optical depths. This is mainly caused by the
ionization of the abundant elements, combined with the effects
of equilibrium radiation in the deeper parts of these atmospheres.
We show that the first ionization of He reduces also the local
stability over a large part of the atmosphere, similar to the effect
of H ionization for models with lower effective temperatures.
Since the contribution to the adiabatic exponents by simulta-
neous ionization of various elements and equilibrium radiation
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can be calculated directly, this allows for a better understand-
ing of stability problems in general, but in particular also on
dependence of the metallic abundance.

It is shown that the first adiabatic exponent I'; can have
values below unity, while this is expected not to be the case in
many theoretical deductions for shock waves. This effect results
from the combination of ionization and equilibrium radiation
at high optical depths. It has to be related to strong dynamical
or atmospherical instabilities under certain atmospherical con-
ditions. From the Kurucz models of extreme supergiants, these
conditions appear to be realistic.
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