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ABSTRACT
We have developed a new formalism to compute the thermodynamic coefficient in the theory of!1stellar and atmospheric stability. We generalize the classical derivation of the Ðrst adiabatic index, which

is based on the assumption of thermal ionization and equilibrium between gas and radiation tem-
perature, toward an expression that incorporates photoionization due to radiation with a temperature

di†erent from the local kinetic gas temperature. Our formalism considers the important non-LTETradconditions in the extended atmospheres of supergiant stars. An application to the Kurucz grid of cool
supergiant atmospheres demonstrates that models with between 6500 and 7500 K becomeTrad^ Teffmost unstable against dynamic perturbations, according to LedouxÏ stability integral This resultsS!1T.
from and acquiring very low values, below 4/3, throughout the entire stellar atmosphere, which!1 S!1Tcauses very high gas compression ratios around these e†ective temperatures. Based on detailed non-LTE
calculations, we discuss atmospheric instability of pulsating massive yellow supergiants, such as the
hypergiant o Cas (Ia`), which exist in the extension of the Cepheid instability strip, near the Eddington
luminosity limit.
Subject headings : instabilities È hydrodynamics È stars : atmospheres È stars : variables : other È

supergiants

1. INTRODUCTION

The atmospheres of cool massive supergiants are
unstable, which causes pulsation variability, strongly devel-
oped large-scale atmospheric motion Ðelds, excessive mass
loss, and extended circumstellar envelopes. One of the best
studied examples of these very luminous supergiants is the
yellow hypergiant o Cas (F2-G Ia`). This evolved star
exhibits stable pulsation (quasi) periods of 300[500 days.

Although the i- and c-mechanisms have been identiÐed
as the main cause for driving pulsations of the less luminous
high-gravity atmospheres of Cepheids, little is known about
the efficiency of these e†ects for the much more extended
and tenuous atmospheres of cool massive supergiants. In
detailed calculations of the Ðrst generalized adiabatic index

Lobel et al. (1992 ; Paper I) found that this quantity!1,assumes very small values, below 4/3, in low-gravity model
atmospheres with K, primarily because5000 ¹Teff ¹ 8000
of the partial thermal ionization of hydrogen. Stothers &
Chin (1999) recently suggested that enhanced mass loss due
to ionization-induced dynamical instability of the outer
envelope of luminous supergiants that evolve redward
would terminate their redward movement, and provide an
explanation for an observational lack of yellow and red
supergiants with log (L

*
/L

_
)º 6.0.

However, the major problem for evaluating supergiant
dynamic (in)stability, based on detailed calculations of !1,is the breakdown of LTE conditions in these very extended
atmospheres. The importance of non-LTE (NLTE) ioniza-
tion and excitation conditions is evident from modeling the
spectra of these stars, which are formed in conditions of
very small gravity acceleration. The local ionization equi-
librium is strongly determined by the stellar radiation Ðeld,
which determines important thermodynamic quantities
such as the heat capacities and the related mechanic com-
pressibility of these atmospheres.

In this paper we develop, for the Ðrst time, a self-
consistent thermodynamic formalism which accounts for
departures from LTE for the calculation of This goal is!1.

accomplished by introducing the temperature of the radi-
ation Ðeld as an independent state variable, which can di†er
from the local kinetic gas temperature. We discuss in ° 2 the
departure from thermal ionization equilibrium by an inci-
dent and diluted stellar radiation Ðeld in the Eddington
approximation. Section 3 provides a historical overview of
the development of the theory of the adiabatic indices. The
complete analytical expressions for the computation of !1and the heat capacities in mixtures of monatomic gas inter-
acting with radiation are given in ° 4. We account for depar-
tures from LTE conditions due to the interaction of matter
and radiation by evaluating the thermodynamic quantities
accordingly. Section 5 presents a discussion of the e†ects of
NLTE conditions on in cool supergiants. These detailed!1NLTE calculations of are applied in ° 7, to evaluate their!1dynamic stability according LedouxÏ stability integral S!1Tfor radial fundamental-mode oscillations (° 6). We apply
our calculations to a new (Kurucz) grid of cool supergiant
model atmospheres, which we compute down into the
stellar envelope. We demonstrate that NLTE ionization of
hydrogen strongly enhances the destabilization of super-
giant atmospheres with K. For models6500 ¹ Teff ¹ 7500
toward smaller gravity acceleration the stability integral
decreases, and the destabilizing regions occur at lower den-
sities over a larger geometric fraction of the atmosphere. A
discussion of these results in relation to pulsation driving in
yellow hypergiants, and in atmospheric instability regions
recently identiÐed in the upper portion of the H-R diagram
by de Jager & Nieuwenhuijzen (1997), is given in ° 8. The
conclusions of this theory and application are listed in ° 9.

2. NON-LTE IONIZATION

In the atmospheres of supergiants the ionization balance
of tenuous gas is not solely determined by a collisional
equilibrium according to the Saha equation. SigniÐcant
departures from thermal (equilibrium) ionization occur due
to photoionization by an incident radiation Ðeld. The local
ionization state then becomes dependent on both kinetic
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gas temperature and the temperature of the radiation Ðeld.
For example, stellar UV radiation strongly inÑuences the
Balmer continuum in hot stars. In deeper atmospheric
layers, where the atmosphere is sufficiently optically thick
for all wavelengths, both temperatures thermalize, and the
equilibrium radiation Ðeld assumes an intensity distribution
determined by the local kinetic gas temperature. In the
upper layers the radiation Ðeld dilutes with distance from a
point in the atmosphere where the gas becomes sufficiently
optically thin, and the radiation temperature decouples
from the local thermodynamic conditions.

2.1. Eddington Approximation
A comprehensive description of partially ionized systems

that deviate from equilibrium because of a radiation Ðeld of
temperature not in equilibrium with the electronTrad,Maxwell distribution of temperature is given in ElwertT

e
,

(1952). All particle components (neutrals, ions, and
electrons) are assumed to be in a Maxwell distribution. For
the calculation of ionization fractions, this statistical theory
assumes that the detailed balance between collisional
and/or radiative ionization and recombination processes
applies. It enables us to express the ionization fractions
through a departure coefficient b from the Saha equilibrium
(also the ““ NLTE Saha equation ÏÏ), which can be evaluated
using a reduced form of the collision ionization cross
section and, for the photoionization coefficient, a diluted
Planck distribution with a cross section obtained from
quantum mechanical calculations. The Elwert equation is
given by
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j
, (1)

where denotes the number density of particles in the jthn
jionization stage, and is the electron number density. Then

eSaha-Boltzmann equation for thermal ionization form the
rth excitation level is
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with the partition function u
j
\ £

r/0= g
r,j exp ([s
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e
),

and where is the ionization energy from the ground state,I
jis the excitation energy of level r, and its statisticals

r,j g
r,jweight. Here h is the Planck constant and the other symbols

have their usual meaning. The departure coefficient (for ion-
ization from the ground level) in equation (1) is
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with the function
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where we denote and Here Ay
e
\ I

j
/(kT

e
) yrad\ I

j
/(kTrad).and B are constants that depend on the ionization energy,

the Thompson cross section, and the Bohr radius. Note that
equation (2) depends only on the kinetic gas temperature T

e
,

whereas equation (1) is dependent on as well. The dilu-Tradtion factor with geometric height d from the stellar surface

isR
*
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where At the surface z\ 1, the dilution factorz\ d/R
*
.

because a gas particle is irradiated at most byW (z\ 1)\ 12,half the stellar hemisphere.
Ecker (1978) distinguished two important conditions of

partial ionization from the general equation (1), based on a
critical electron density which is a function of the kineticn

c
,

temperature and the ratio of the radiation and kinetic tem-
perature,
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1. T he corona case.ÈAssumes that the radiation density
is so small that photoionization is negligible compared to
electron collision ionization, and the electron density is still
so small that three-body recombination is negligible com-
pared to radiative recombination :
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Hence, the departure coefficient can be approximated by
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which demonstrates that for coronal conditions the plasma
becomes ““ underionized ÏÏ to a degree smaller than the Saha
equilibrium, and for which the ionization fraction becomes
independent of the local electron number density, since it
cancels out in equation (1) with equation (8).

2. T he Eddington case.ÈAssumes that the electron
density is so small that ionization is dominated by photo-
ionization, and three-body recombination is dominated by
radiative recombination :
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Hence, the departure coefficient can be approximated by
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Note that for these conditions of relatively low electron
density and high radiation density, the ionization fraction
still depends on the electron temperature through the radi-
ative recombination mechanism.

2.2. Governing Ionization Equation
For our calculation of in the atmospheres of super-!1giants, we consider the Eddington approximation, for

which photoionization dominates collisional ionization.
The departures from LTE become very large in low-density,
optically thin regions. Because of the radial variation of the
local temperature and the wavelength variation of the
opacity sources, the emitted spectrum departs from a black-
body at any particular temperature. However, for Teffabove 4000 K, the local gas density and temperature are
only weakly determined by the ambient radiation Ðeld,
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because important molecular opacity sources remain
limited for these conditions. For our calculations we can
assume that the stellar radiation Ðeld in the atmosphere
where (i.e., above can be approximated by theqRoss\ 23 R

*
)

e†ective temperature, For ““ gray ÏÏ atmospheresTrad^Teff.in radiative equilibrium, the color (surface brightness or
radiation) temperature is (Woolley & Stibbs 1953,0.811Teffp. 51).

We also consider non-LTE ionization conditions in at-
mospheric regions where with and belowqRoss\ 23, T

e
Trad20,000 K, for ionization energies in excess of 7 eV. Hence,I

jthe trailing factor at the right-hand side of equation (11)
approaches unity or
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It represents a more tractable expression for our further
derivation of important thermodynamic derivatives in ° 4.2.
The NLTE Saha equation in the Eddington approximation
is hence obtained from equations (1), (2), and (12) for single
ionization ( j\ 0È1) from the ground level (or ofs

r,j\ 0)
element i :
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Eddington (1926) Ðrst considered ionization of the inter-
stellar medium due to ionizing radiation from nearby stars,
and obtained
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with of the order of the e†ective temperatures of stellarTradatmospheres. The factor on the right-hand side of equation
(13), is due to thermal motions, and Ðrst appears(T

e
/Trad)1@2,in Rosseland (1936). (1948) gave a further reÐne-Stro� mgren

ment of equation (13) for photoionization from the ground
state, which includes recombinations onto energy levels
above the ground level. Weymann (1962) applied equation
(13) in a study of the ionization equilibrium in the upper
atmosphere of the supergiant a Ori (M2 Iab), where T

e
¹

5500 K. Similar applications to the wind conditions of
stellar chromospheres are given in, e.g., Hartmann &
McGregor (1980).

We conclude this section by emphasizing that the condi-
tion of detailed balance, for photoionizations by an equal
number of recombinations (per unit volume and unit time)
in the Eddington approximation, is required for applying
equation (13). In addition to the condition of detailed
balance, our calculations of thermodynamic quantities also
require that the kinetic temperatures of the neutrals, ions,
and electrons thermalize on a timescale shorter than the
characteristic timescale of heat exchange within the Ñuid ;
i.e., due to an atmospheric temperature gradient. The
proton-electron relaxation time (Spitzer 1972) is
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where is the proton charge number, e is the electronZ
p
\ 1

charge, and is the proton mass in atomic units (^1).A
p

m
p

For K, in the atmospheres of2 ] 103¹ T
e
¹ 2 ] 104

supergiants, where cm~3, and which are mainlyn
e
D 1012

composed of hydrogen, we compute for ln"^ 10 (as tabu-
lated in Spitzer 1962) that large hydrodynamic pertur-
bations of the local state variables should not occur on
timescales shorter than s, or on9 ] 10~7 ¹ t

s
¹ 5 ] 10~6

characteristic length scales smaller than EquilibriumVflow t
s
.

thermodynamic conditions cannot, for example, be estab-
lished within the thin layer trailing strong shock waves
where the electron temperature departs from the heavy par-
ticle gas temperature, or by the presence of strong electro-
magnetic Ðelds that can separate the neutral and charged
particle temperatures of a tenuous plasma.

3. STELLAR STABILITY COEFFICIENTS

Eddington (1918, 1919, 1926) Ðrst derived an analytical
expression for the Ðrst adiabatic index for a mixture of!1material gas with radiation. His equation (129.52) is

!1\ b ] (4[ 3b)2(c[ 1)
b ] 12(c[ 1)(1[ b)

, (16)

where c is the speciÐc heat ratio, and b is the ratio of the
material gas pressure to the total pressure (using modern
symbols). He distinguished a general, or ““ e†ective,ÏÏ ratio of
speciÐc heats from the exponent to the density in the poly-
tropic equation of state : P\ Ko!, where K is a constant.
Strictly thermodynamically speaking, the quantities ! and

are not identical, but the terminology of ““ an exponent ÏÏ!1to indicate EddingtonÏs adiabatic quantity

!1 4
AL ln P
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B
ad

(17)

has been adopted since in the astrophysical literature.
EddingtonÏs consideration of evaluating adiabatic ther-
modynamic derivatives for studying adiabatic stellar oscil-
lations was later more rigorously addressed by
Chandrasekhar (1939). He deÐned the two other adiabatic
indices,
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and also Ðrst obtained detailed expressions for a mixture of
material gas and radiation. Here P denotes the total pres-
sure, i.e., the sum of partial material gas pressures and radi-
ation pressure. Only two of the three adiabatic indices are
independent, because a nondegenerate gas state is deter-
mined by at least two independent state variables,

!3 [ 1 4
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. (20)

With these deÐnitions, Chandrasekhar also obtained more
general expressions for the speciÐc heats and andC
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v
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clearly distinguished from His equation (148),!1 C
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v
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where
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where and are the speciÐc heats of the material gas,c
p

c
vmarks an important step toward a self-consistent descrip-

tion of thermodynamic derivatives required in the theory of
dynamical, convective, and pulsational stability of stellar
atmospheres. Fowler & Guggenheim (1925) were the Ðrst to
derive expressions for the speciÐc heats with radiation,
where various stages of ionization of the material are
allowed. However, they made certain assumptions about
the weight factors and the excitation of atoms and ions,
which were too restricted. Independently, Riewe,Mo� glich,
& Rompe (1939) derived expressions for the speciÐc heats of
a singly ionizing one-component monatomic gas without
radiation, which were corrected shortly after by Biermann
(1942). He calculated
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where I is the ionization energy, x is the ionization fraction,
and N is the number of atoms per unit mass. Biermann also
derived the correct expression for the Ðrst adiabatic index
(evidently without using this terminology) for negligible
radiation pressure,

!1\ 5 ] x(1[ x)(5/2 ] I/kT )2
3 ] x(1[ x)[3/2] (3/2 ] I/kT )2] . (26)

Note that the expression simpliÐes to equation (16) without
partial ionization (x \ 0), since b ] 1 with vanishing radi-
ation pressure, and hence for monatomic gas.!1] c\ 5/3

Rosa & (1948) extended the expressions for theUnso� ld
speciÐc heats by considering a mixture of partially ionizing
hydrogen and helium gas. They also provided a detailed
numerical evaluation of their expressions. These calcu-
lations followed an investigation by (1938) ofUnso� ld
SchwarzschildÏs convection criterion. He improved on

earlier work by Siedentopf (1933a, 1933b, 1935), and
obtained the correct equation for the adiabatic temperature
derivative,
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(1938, p. 380) introduced the ““ mean ÏÏ degree ofUnso� ld
ionization where is the abundance ofx6 \ £

i
m l
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, l

ielement i, and hence for a fully ionized gas. Thisx6 \ 1
enabled him to obtain an extended analytical expression for

in terms of summations over the ionization!2/(!2[ 1)
fractions of m elements of a gas mixture (see his eq. [93, 20]).
In the second edition of his monograph on stellar atmo-
spheres, (1968, p. 232) also derived an expression forUnso� ld

by means of the deÐnition of A similar treatment forc
p
, x6 . c

vis given in Menzel, Bhatnagar, & Sen (1963, p. 79). These
equations, however, omit the important inÑuence of a radi-
ation Ðeld, as Chandrasekhar demonstrated. This problem
has been investigated by Krishna-Swamy (1961), who com-
puted the adiabatic temperature derivative for a multi-
component mixture of singly ionizing monatomic gas and
radiation, using an equation of state of the form P

t
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The complete analytical expressionsNkT (1] x6 )o] 13aT 4.
for the speciÐc heats of this mixture were Ðrst derived by
Mihalas (1965) :
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where is the ionization energy of elementSx2T \ £
i
l
i
x
i
2, I

ii, a is the ratio of the radiation pressure and the material gas
pressure, and the other symbols have their usual meaning.
These equations simplify to equations (24) and (25) in cases
where the radiation pressure vanishes (a ] 0), for a one-
component gas m\ 1 (hence and Sx2T \ x2). Theyx6 \x
also simplify to equations (22) and (23) when partial ioniza-
tion of all elements vanishes since a \ 1/b [ 1, and(x
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for monatomic ideal gas orc
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The analytical representation of equations (28)c
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and (29) appears rather complex, but we show in ° 4.2 that
their further generalization, in which the gas temperature
di†ers from the radiation temperature, enables us to deÐne
for every element i two functions and which reduceG

i
H

i
,

and to basically two terms.c
Pt

c
vThe calculation of the adiabatic indices for real gas in the

context of equilibrium thermodynamics was Ðrst given by
Cox & Giuli (1968, p. 183). The speciÐc heat ratio is related
to the ratio of the isothermal and adiabatic compressibility
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coefficient via the Maxwell relations,
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where S denotes the thermodynamic entropy function.
Hence, can be expressed by!1
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The thermodynamic derivative, is the b(L ln P
t
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factor on the right-hand side of equation (21), which Chan-
drasekhar distinguished from the speciÐc heat ratio by cal-
culating EddingtonÏs index for a mixture of ideal material
gas and radiation. Cox & Giuli (1968, p. 209) proposed
calling this factor the ““ density exponent in(L ln P
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Tthe pressure equation of state ÏÏ probably following theso,adopted designation of ““ adiabatic exponent ÏÏ for !1 ;
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Although this terminology has been widely adopted in the
literature, we note that this quantity is by no means a true
““ exponent ÏÏ in the polytropic equation of state. It is merely
a coefficient to the speciÐc heat ratio, required to determine
an important adiabatic derivative. Fowler & Guggenheim
(1925) also calculated this quantity and aptly called it ““ the
isothermal factor ÏÏ (see their eq. [9]), since it is inversely
proportional to the isothermal compressibility coefficient :

Cox & Giuli (1968) also introduced thei
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““ temperature exponent ÏÏ (more appropriately the
““ isochoric factor ÏÏ),
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which provides an important general relation for the ther-
modynamics of real gas :
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Thermodynamic stability demands that both heat capac-
ities and both compressibilities are positive. For every real
gas, and and does not equalc
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vthe universal gas constant. The latter equality applies only
to simple ideal gas, for which s
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With the deÐnitions of the isothermal and isochoric
factor, the two other adiabatic indices are obtained with
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which yields the general identity equation (20). The com-
plete expressions for and for a singly ionizing multi-so s

Tcomponent monatomic gas with radiation are (Lobel et al.

1992)
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Note that for a hypothetically nonionizing gas (x
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and hence and These expressions sim-so] b s
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] 4[ 3b.
plify to those of Cox & Giuli (1968) for a gas composed of
one ionizing element and radiation. Note that Bier-(x6 \ x)
mann (1942) Ðrst derived without radiation (b \ 1), butsoexpressed as a factor to c
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where k is the mean molecular weight. In the partial ioniza-
tion zone of an abundant element, the mean molecular
weight reduces because where is thek \k0/(1 ] x6 ), k0mean molecular weight of the un-ionized gas (e.g., k0\ 1.26
for the abundance of cosmic material). In these regions the
mean ionization fraction increases and, as canx6 (0¹ x6 ¹ 1)
be seen from equation (38), assumes values below unity.soThe increased compressibility in the thermal ionization
regions reduces, with equation (32), the value of the Ðrst
adiabatic index to below the monatomic gas value of 5/3.!1Here, compression energy is mainly converted into ioniza-
tion energy, which also changes the local heat capacities. An
equilibrium radiation Ðeld reduces b ] 0, and hence so] 0
and s

T
] 4.

Lobel et al. (1992) demonstrated that can assume!1values below unity when isotropic radiation pressure is
important in the partial ionization region of an abundant
element, although for every stable gas. Thec\ c

Pt
/c

v
[ 1

higher compressibility of radiation, compared to pure
material gas of the same temperature and pressure, dimin-
ishes to very low values for K, in theso 6100 ¹T

e
¹ 9000

partial ionization region of hydrogen. Hence, can!1decrease to very small values of 0.84. Note, however, that
when radiation vanishes, the product of the speciÐc heat
ratio and always exceeds unity The extendedso (!1 º 1).
equations (28), (29), (38), and (39) also enable us to correctly
compute the compressibility of atmospheric regions where
simultaneous ionizations of various elements (e.g., H] H`
and He] He`) considerably lower the values of !1, !2,and !3.The combination of ionization and radiation can dimin-
ish to below 4/3, which plays an important role in the!1study of dynamic stability of gas spheres, which we discuss
in ° 6. Conventional calculations of the adiabatic indices
assume, however, that the gas and radiation temperature
are equal, and that no interaction occurs between the
material gas and the radiation Ðeld. We presently investi-
gate the e†ects of a radiation Ðeld on the adiabatic indices
due to photoionization in the Eddington approximation.
The local ionization state is no longer determined by pure
collisional processes, but by the incident and diluted radi-
ation Ðeld as well. Radiative deviations from the Saha equi-
librium produce important e†ects on the overall
compressibility of the plasma, which directly determines the
dynamic stability of supergiant atmospheres.
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4. FIRST ADIABATIC INDEX WITH PHOTOIONIZATION

4.1. DeÐnition of the Generalized Functions
When the radiation temperature di†ers from the local

kinetic gas temperature, the classic equation of state, which
assumes thermal equilibrium between material gas and
radiation is replaced byP

t
\ NkT (1] x6 )o ] 13aT 4,

P
t
\ NkT

e
(1] x6 )o ]W

3
aT rad4 , (41)

where the Ðrst term is the material gas pressure, and theP
g
,

second term is the diluted radiation pressure, The gasPrad.state is hence determined by three independent state vari-
ables, instead of two. Therefore, the calculation of the Ðrst
adiabatic index must consider and as independentT

e
Tradstate variables. The constituent heat capacities,

c
Pt

\
ALh
LT
B
Pt

and c
v
\
A Le
LT
B
o

, (42)

are replaced by

c
Pt

\
A Lh
LT

e

B
Pt,Trad

]
A Lh
LTrad

B
Pt,Te

(43)

and

c
v
\
A Le
LT

e

B
o,Trad

]
A Le
LTrad

B
o,Te

, (44)

where e denotes the internal energy function, and h is the
enthalpy function. The lowercase symbols denote ““ speciÐc ÏÏ
quantities, or expressed per unit mass. The isothermal
factor

so \
AL ln P

t
L ln o

B
T

(45)

is replaced by

so \ 1
P

t

CA LP
g

L ln o
B
Te

]
ALPrad
L ln o

B
Trad

D
. (46)

It is important to note that the three adiabatic indices
become fully independent by the introduction of an addi-
tional state variable, Since the second and third adia-Trad.batic indices are temperature derivatives, they are also
redeÐned by

!2,g
!2,g [ 1

4
AL ln P

t
L ln T

e

B
ad

,
!2,rad

!2,rad [ 1
4
A L ln P

t
L ln Trad

B
ad

, (47)

and by

!3,g [ 1 4
AL ln T

e
L ln o

B
ad

, !3,rad [ 1 4
AL ln Trad

L ln o
B
ad

. (48)

With these deÐnitions, the identity equation (20) no longer
applies, because it is only valid for thermodynamic systems
with a unique temperature.

4.2. Derivation of the Generalized Functions
In the Appendix we obtain the detailed expression for the

speciÐc heat capacities for which di†ers from TheT
e

Trad.Appendix is self-contained and can be read without further
cross-references. All thermodynamic quantities and func-

tions are deÐned, and their detailed expressions are present-
ed there. Major intermediate results, required to obtain the
detailed expression for and are also provided. Wec

Pt
c
v
,

denote and Ðnd after considerable algebrah \T
e
/Trad,

c
Pt

Nk
\
G5
2

] 4a[4h(a ] 1)] 1]
H
(1] x6 )

];
i

l
i
x
i
(1[ x

i
)H

i
(49)

and

c
v

Nk
\
A3
2

] 12ah
B
(1] x6 ) ];

i
l
i
x
i
(1[ x

i
)G

i
, (50)

with the functions

X \ ;
i

l
i
x
i
(1[ x

i
) , (51)

Y \ ;
i

l
i
x
i
(1[ x

i
)

I
i

kT
e

, (52)

and for every element i,

Q
i
\ 1

2
] h
A
1 ] I

i
kTrad

B
, (53)

G
i
\ Q

i

C(3/2)x6 [ Y
x6 ] X

] I
i

kT
e

D
, (54)

H
i
\ (Q

i
] 1 ] 4ah)

]
C(5/2 ] 4a)x6 (1] x6 ) [ Y

x6 (1] x6 ) ] X
] I

i
kT

e

D
. (55)

It can be shown that for h \ 1, equations (49) and (50)
simplify to equations (28) and (29). The Ðrst term in equa-
tions (49) and (50) is the heat capacity due to the trans-
lational motion of neutral atoms, ions, and electrons, and a
is dependent on the diluted radiation pressure. The second
term increases the heat capacities due to extra internal
degrees of freedom, which result from partial photoioniza-
tion by the incident radiation Ðeld. When theTrad] T

e
,

NLTE ionization balance assumes the thermal Saha equi-
librium, and the generalized heat capacities simplify to the
heat capacities for a unique temperature T .

The analytical expression for the isothermal factor inso,which di†ers from is formally identical to equationTrad T
e
,

(38) :

so \ b[x6 2] x6 ] ;
i
l
i
x
i
(1[ x

i
)]

(1] x6 )[x6 ] ;
i
l
i
x
i
(1[ x

i
)]

. (56)

However, the dilution of the radiation pressure enters this
generalized expression through b. The second term on the
right-hand side of equation (46) vanishes because isPradinvariable for constant and is independent ofTrad, Prad T

e
.

The derivative in the Ðrst term is evaluated for variable Trad,because the radiation temperature determines the NLTE
ionization fraction.

In ° 7 we investigate numerically the properties of the
NLTE for multicomponent monatomic gas with radi-!1ation. If we consider only one element of material gas
(m\ 1 and equation (49) simpliÐes to (see Lobelx6 \ x),



786 LOBEL Vol. 558

1997, p. 83)
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kTrad

B
] 4ah
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and equation (50) to
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2 [ x
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] I
kT

e
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2
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1] I

kTrad

BD
. (58)

Because the isothermal factor equation (56) simpliÐes to

so\ 2b
(1] x)(2[ x)

, (59)

we obtain after some algebra the NLTE ““ one-component ÏÏ
Ðrst adiabatic index,

!1\ c
Pt
c
v

so

\ b
G5
2

] 4a[4h(a ] 1)] 1]

]x
2

(1[ x)
A3
2

] '] 4a
BA3
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] h( ] 4ah

BH
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G3
2

] 12ah ]x
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BA1
2

] h(
B

] 3
2

] 12ah
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, (60)

where we denote

'\ 1 ] I
kT

e
and ( \ 1 ] I

kTrad
. (61)

For hence h \ 1 and '\ ( \ 1 ] I/kT , itT
e
\ Trad\T ,

follows that equation (60) simpliÐes to (e.g., eq. [71.16] of
Mihalas & Weibel Mihalas 1984)

!1\

b
5/2 ] 20a ] 16a2] (x/2)(1 [ x)(5/2 ] I/kT ] 4a)2

3/2 ] 12a ] (x/2)(1 [ x)[(3/2] I/kT )2] 3/2 ] 12a]
,

(62)

which simpliÐes without radiation (a \ 0 and b \ 1) to
equation (26).

We have also obtained the detailed expressions for the
two other adiabatic indices, and along similar lines,!2 !3,deÐned by equations (47) and (48), but these will be present-
ed elsewhere. These generalized functions do not simplify to
the classic expressions derived for a unique T , because the
partial temperature derivatives, computed with the Saha
equilibrium equation, di†er from those obtained using the
NLTE Saha equation. It should be remembered that the

latter is an approximate expression for which the condition
of detailed balance is assumed to sustain the condition of
(ionization) equilibrium. The (LTE) Saha equation,
however, is exact and follows from the minimization of the
free energy function, which dictates the condition of ther-
modynamic equilibrium.

Note that for the computation of thermodynamic quan-
tities, free energy minimization techniques have been
applied to include the e†ects of pressure ionization due to
Coulomb forces, and the e†ect of degenerate states (see
Hummer & Mihalas 1988 ; Mihalas, & HummerDa� ppen,
1988 ; et al. 1988). This numerical approach o†ersDa� ppen
the advantage, for example, of incorporating the tem-
perature dependency of the (properly truncated) internal
partition functions, and of computing their e†ect on the
heat capacities and the compressibilities. However, the free
energy minimization scheme is strictly numerical, because a
large system of nonlinear equations is to be solved iter-
atively for astrophysical mixtures (e.g., Mihalas et al. 1990).

In contrast, our formal approach for mixtures with simul-
taneously ionizing elements and o†ers the advan-TradD T

etage of tracking analytically the complex behavior of the
adiabatic indices. For example, consider the remarkable
occurrence of conditions where Our formalism!1\ 1.
applies, however, to supergiant atmospheres, for which elec-
trostatic interactions and degenerate states are negligible.
Possibly, relativistic or degenerate gas e†ects on can be!1incorporated by the analytical approximations outlined in
Cox & Giuli (1968), Beaudet & Tassoul (1971), Elliott &
Kosovichev (1998), and Stolzmann & (2000). EckerBlo� cker
& Kroll (1963) presented an interesting statistical method,
based on the minimum entropy production principle of irre-
versible thermodynamics, to compute the lowering of ion-
ization energy for a Saha-type equation that considers
Coulomb interaction. Note also that Mollikutty, Das, &
Tandon (1989) computed e†ects of a uniform magnetic Ðeld
on the adiabatic indices, and provided generalized LTE
expressions for the heat capacities, including the magnetic
pressure.

4.3. General T hermodynamic Relation for !1
We conclude this section with an important thermodyna-

mic relation for From the Ðrst law, the relationship!1.among o, and e along an isentrope (dS \ 0) isP
t
,

Ad ln e
d ln o

B
ad

\ h
e
[ 1 , (63)

where The introduction of an additional stateh \ e] P
t
/o.

variable deÐnes surfaces of constant (total) entropyTradwith the speciÐc entropy function s \ s(o, in theT
e
, Trad)space of three independent state variables. For adiabatic

changes, and the Ðrst adiabaticde\P
t
/o2do dh \ 1/odP

t
,

index can be expressed by

!14
Ad ln P

t
d ln o

B
ad

\
Adh
de
B
ad

. (64)

The value of is related to the slope along an adiabate in!1the o) plane, for a given or Since the NLTE Saha(P
t
, Trad T

e
.

equation considers local interactions of material gas with
the incident radiation Ðeld, the total entropy function
cannot classically be obtained by summing over the particle
entropy fractions, the entropy of released electrons, and the
entropy of equilibrium radiation (i.e., by means of the
Sackur-Tetrode equation ; see Lobel 1997, p. 83). Here
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s(o, is to be obtained from the temperature deriv-T
e
, Trad)ative of the free energy, deÐned for the gas state determined

by and Similarly, for conditions of equilibrium,T
e

Trad.e\ e(o, and h \ h(o, are uniquely deÐnedT
e
, Trad) T

e
, Trad)functions, and it can be shown that their ratio isc

H
\ h/e

related to the Ðrst adiabatic index by

!1\ c
H

] c
H

c
H

[ 1
Ad ln c

H
d ln o

B
ad

. (65)

Hence, the decrease of due to partial ionization and the!1release of bound electrons is related to the decrease of c
H(e.g., Nieuwenhuijzen et al. 1993). While the value of is!1related to the adiabatic compressibility of the Ñuid (e.g., the

bulk modulus) by local mechanic perturbations, the value of
is determined by the corresponding changes of the inter-c

Hnal energy.

5. BEHAVIOR OF IN SUPERGIANT ATMOSPHERES!
1

Figure 1 shows the behavior of and the mean ioniza-!1tion fraction for variable and We compute thex6 , T
e

Trad.thermodynamic quantities for a mixture of 16 elements
comprising H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, K, Ca,
Cr, and Fe, for solar abundance values (Anders & Grevesse
1989). The internal partition functions are derived accord-
ing the methods developed by Claas (1951) and by Baschek,
Holweger, & Traving (1966). The left-hand panels of Figure
1 display the NLTE computed at the stellar radius!1

and the right-hand panels show In the top(W \ 12), x6 .
panels the material gas pressure is set to 10 dyn cm~2,
whereas 0.5 dyn cm~2 is used for the bottom panels. These
conditions are typical for the atmospheres of cool super-
giants. Figure 1 reveals that acquires minimum values!1for between 7000 and 9000 K, primarily due to theTradpartial ionization of hydrogen. Toward very low Trad, !1approaches the value of 5/3 for monatomic ideal gas,
whereas for high assumes the equilibrium radiationTrad, !1value of 4/3. The intermediate regions with lowest corre-!1spond to The NLTE ionization equation causes ax6 ^ 0.5.
strong dependence of the local mean ionization fraction on
the value of For a given radiation temperature,Trad.however, at constant gas pressure, the ionization fraction
decreases toward higher kinetic gas temperatures, because
the NLTE ionization fraction remains dependent on the
local kinetic temperature through the factor in equa-T

e
1@2

tion (13) (but which is for pure collisional ionization).T
e
3@2

We Ðnd minimum values for that can decrease to!1below 0.7 for very small gas pressures and low TheT
e
.

minima gradually increase for larger gas pressures, by shift-
ing toward higher This is also shown by the surfaceTrad. !1plots of Figure 2. The deep minimum around KTrad^ 8000
(bottom panel) becomes shallower and broadens for
increased kinetic pressures (top panel). The relative decrease
of the radiation pressure also enhances the partial ioniza-
tion of He, which is visible for between 14,000 andTrad16,000 K. Note that we have also included the partial ion-

FIG. 1.ÈL eft : First adiabatic index computed with partial NLTE ionization for conditions of cool supergiant atmospheres. The mean ionization!1fraction (right) varies with the radiation temperature and the kinetic gas temperature Here assumes minimum values for toward smallerx6 (T
e
). !1 x6 ^ 0.5 T

e
.

The top panels are for a gas pressure of 10 dyn cm~2, and the bottom panels for dyn cm~2.P
g
\ 0.5
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surface plots for (top) and 1 (bottom) dyn cm~2. The deep minima of result from partial NLTE ionization of hydrogen withFIG. 2.È!1 P
g
\ 10 !1K. The minima between 14,000 and 16,000 K result from the partial ionization of helium. The decrease of yields smaller minima for7000 ¹Trad ¹ 9000 P

g
!1with values below 0.7, which corresponds to very high gas compression ratios for these conditions in the atmospheres of cool supergiants.

ization of He` in our calculations. Its ionization can be
treated as a separate ““ element,ÏÏ because the ionization
energy is very high, and partial ionization occurs around
25,000 K for dyn cm~2. Electrons from less abun-P

g
\ 1

dant metal atoms, with smaller ionization energies, contrib-
ute only slightly to the total electron pressure. The much
larger abundance of hydrogen (by about a factor of 10
larger than the He abundance) causes the large decrease of

to occur for between 7000 and 9000 K, for the small!1 Tradgas pressure conditions of supergiant atmospheres.
An important inÑuence on the local mean ionization frac-

tion is the dilution of radiation pressure with distance above
which we further discuss in ° 7.1. Calculations withR

*
,

(for z[ 1) reveal that the minima of increase,W (z) \ 12 !1which is expected when kinetic pressure dominates the gas
state.
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6. THEORY OF STELLAR DYNAMIC STABILITY

The theory of adiabatic oscillation of gas spheres shows
that, for homologous radial motion, the square of the
angular frequency of the lowest radial pulsation mode, in
the linear approximation, is given by (Ledoux 1945, 1965)

p02\ /0R (3!1[ 4)3P
t
dV

/0R r2o dV
\
T

!1[ 4
3
U 3)0

I0
, (66)

where is the gravitational potential of the star in its)0equilibrium state, and denotes the moment of inertiaI0with respect to the center of the star. Since is a function!1of depth in the star, the integration requires geometrical
depths down to the stellar center for the computation of p02.When the conÐguration is stable, because thep02[ 0,
standing-wave solution of the equation of motion does not
grow with time. For supergiants, we can assume that the
fundamental eigenfrequency is not a†ected by magneticp0Ðelds, and that rotational kinetic energy can be neglected.

Stellar dynamic stability depends on the volume-
averaged value of and vanishes when this average,!1,

S!1T \ /0R !1P
t
dV

/0R P
t
dV

, (67)

is less than 4/3, and hence Because our detailedp02¹ 0.
knowledge of is limited to the atmospheric layers, it is!1not straightforward to infer stellar dynamic stability from
equation (67). However, Stothers (1999) recently argued
that the integral can be limited to ““ an e†ective basis,ÏÏ or a
point at which becomes constant in deeper parts ofS!1Tthe atmosphere near the base of the stellar envelope.
Numerical integrations of the equation of motion demon-
strate that this truncation is allowed, because the radius
eigenfunction d(r)/r (the relative pulsation amplitude) at the
base of the outer envelope is already many orders of magni-
tude smaller than its value at the stellar surface (so small
that it is virtually indistinguishable from zero). Since regular
stellar pulsation is caused by envelope mechanisms, this
limitation of LedouxÏ stability integral provides a useful
means to test for atmospheric stability throughout the H-R
diagram. Note, however, that a sound analytical foundation
for this numerical ““ criterion ÏÏ is currently lacking, and that
important thermodynamic e†ects due to improved descrip-
tions of as we present here, are crucial to ascertain its!1,validity. Nevertheless, atmospheric regions where ioniza-
tion and radiation cause to locally decrease to below 4/3!1are of great interest. These real gas e†ects also inÑuence !2and in supergiants (e.g., Lobel et al. 1992). It is well!3known that the local lowering of causes the onset of!2convective motions. (1948) mentions convectiveUnso� ld
““ instability ÏÏ regions in the partial ionization zones of H
and He. For dynamically stable atmospheres, the local
decrease of is linked to an increase or decrease of oscil-!3lation amplitudes over time, which determines the starÏs
pulsational stability.

7. APPLICATION TO SUPERGIANT MODEL ATMOSPHERES

7.1. Model Grid
Based on the NLTE expression for in ° 4.2, we investi-!1gate dynamic stability of atmospheric models we calculate

for a range of e†ective temperatures and gravity acceler-
ations for cool supergiants. The new model grid is com-
puted to very high optical depths of withlog (qRoss)^ 5

ATLAS9 (R. Kurucz 2000, private communication). A
modiÐed version of ATLAS9 is used, which, for certain
models, includes 999 optical depth points. The number of
points per decade has been improved for the computation
of numerical derivatives in the treatment of convection. In
deep model layers, the convection decreases or completely
vanishes.1 The temperature structure for models with spher-
ical symmetric geometry will change signiÐcantly, and more
detailed solutions of the NLTE problem (i.e., by solving
detailed rate equations) will inÑuence the behavior of In!1.the present application, we assume that the stellar radiation
Ðeld in the optically thin part of the model atmospheres

can be approximated by the stellar e†ective tem-(qRoss \ 23)perature for our computation of with height (see ° 8 for a!1discussion).
The top panel of Figure 3 shows the behavior of (bold!1solid line) in the model with K and log g \ 1.0.Teff \ 8000

In the partial NLTE ionization region of hydrogen, !1decreases to D0.8, around Toward smallerlog qRoss\ [2.
increases and assumes values of D4/3 (dotted hori-qRoss, !1zontal line) in the outermost atmospheric layers. This results

1 More information on the ATLAS9 code and these plane-parallel
hydrostatic models is available from Kurucz web site, http ://kurucz/
grids.html.

FIG. 3.ÈRun of in the model atmosphere with K and!1 Teff \ 8000
log g \ 1.0. The strong decrease of to below 4/3 (dotted horizontal line)!1results from partial NLTE ionization for optical depths qRoss\ 23 (DR

*
;

bold solid line). We assume and for the computation ofTrad\Teff W \ 12above At larger depths in the photosphere, mainly decreases!1 R
*
. !1because of thermal (LTE) ionization of H and He. The corresponding

mean ionization fraction is shown in the bottom panel (bold solid line). Atx6
smaller optical depths the gas becomes fully ionized because exceedsTradFor unrealistic conditions of LTE, with these layers wouldT
e
. Trad\T

e
,

assume a very small with larger values (dash-dotted lines). The inÑu-x6 , !1ence of the dilution of radiation with distance z above is shown byR
*dashed lines. The mean ionization fraction assumes at smallerx6 ^ 0.5

optical depths when the ionizing radiation Ðeld dilutes more with increas-
ing distance z. Consequently, the deep minimum of in the top panel, due!1to partial NLTE ionization of hydrogen, occurs at smaller optical depths.
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from the ionizing stellar radiation Ðeld, which enhances the
mean ionization fraction (bottom panel, solid line) of very
optically thin layers. When only collisional ionization is
considered (dash-dotted line), the local kinetic temperature
becomes too low to appreciably partially ionize the Ñuid,
and exceeds unity. The minimum is therefore deter-!1 !1mined by the incident stellar radiation Ðeld, which dilutes
above The inÑuence of lowering W (z) in theR

*
(qRoss\ 23).

NLTE ionization equation and in the radiation pressure is
shown by the dashed lines for di†erent values of z. The
dilution of the ionizing radiation Ðeld diminishes the local
value of and the point at which occurs in layers ofx6 , x6 ^ 0.5
increasingly smaller optical depth. Hence, the correspond-
ing minimum in (top panel) displaces toward smaller!1values.qRossAt large optical depths the radiation tem-(qRoss[ 23),
perature approaches the kinetic gas temperature. Here !1decreases to below 4/3 due to thermal (LTE) ionization of
hydrogen and helium, whereas a smaller decrease of !1results from He` ionization at the base of the model. At

very large optical depths we compute that(qRoss[ 10,000)
the Ñuid becomes fully ionized, and assumes constant!1values around 1.45. Deeper down at the base of the stellar
envelope, the value of asymptotically approaches 4/3,!1because radiation pressure outweighs the gas pressure for
high temperatures above 105 K.

Figure 4 shows the behavior of in model atmospheres!1for K, with small log g values. The4000 ¹ Teff ¹ 20,000
models are plane-parallel and assume a constant value of 2
km s~1 for microturbulence with depth (Kurucz 1996).
Although the e†ect of spherical geometry of extended atmo-
spheres on the hydrostatic solution for the thermodynamic
state is not negligible, we here compare di†erences in ofTradat least 500 K, which are sufficient to outweigh this e†ect.
We therefore infer global trends in for a wide range of!1e†ective temperatures. In the model with KTeff \ 4000
(Fig. 4, top left panel), assumes values around 5/3 in the!1outer atmospheric regions. In deeper layers lowers to!1^1.15, primarily because of thermal (LTE) ionization of
hydrogen. For K, the stellar radiation ÐeldTeff \ 5000

FIG. 4.ÈBehavior of in the outer envelope of supergiants with K. Model and log g values are labeled. The NLTE assumes!1 4000 ¹ Teff ¹ 20,000 Teff !1smallest values of D0.8 above for models with between 7000 and 8000 K (top right panel). We assume and for theR
*

(qRoss\ 23) Teff Trad\ Teff W \ 12computation of above Beneath the LTE values decrease to below 4/3 (horizontal dotted lines) because of partial ionization of H and He. These!1 R
*
. R

*
, !1thermal ionization zones displace outward in models with higher while the partial hydrogen NLTE ionization region in the outer atmosphere displacesTeff,inward. This causes the deep minimum for K. Here assumes increasingly larger values for models of higher (bottom panels). For!1 7000 ¹Teff ¹ 8000 !1 Teffmodels with K and log g º 2.5, helium is nearly fully ionized, and assumes values above 4/3 over the entire atmosphere (see text).Teff º 16,000 !1
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becomes sufficiently intense to partially photoionize hydro-
gen at very small optical depths, which strongly diminishes

We set in our further calculations. When is!1. W \ 12 Teffincreased to 6000, 7000, and 8000 K (Fig. 4, top right panel),
we Ðnd that the partial photoionization region displaces
toward larger optical depths. Here assumes very small!1local values of D0.8 for models with and 8000Trad\ 7000
K. This results from the thermal ionization zone of hydro-
gen, but which displaces toward smaller optical depths for
models with higher T his combined e†ect, whereby theTeff.partial thermal ionization zone displaces outward and the
photoionization region displaces inward by raising Teff,causes to assume very small values (below unity) over a!1large geometrical fraction of supergiant models with 7000 ¹

K.Teff ¹ 8000
In models with K (Fig. 4, bottom left9000 ¹ Teff ¹ 13,000

panel) we Ðnd that the minima in increase above!1 R
*
.

This is because hydrogen becomes further ionized, or x6 [
toward higher For the model with K,0.5 Trad. Teff \ 11,000

hydrogen becomes nearly fully ionized, and exceeds 4/3!1in the upper atmosphere. In these models the thermal He
ionization region occurs at increasingly smaller optical
depths, and for K the region approachesTeff \ 13,000

Around these e†ective (or radiation) tem-qRoss\ 23 (DR
*
).

peratures, the partial photoionization zone of helium
enhances in the upper atmospheric layers, and becomes
noticeable by the decrease of to below 4/3. The bottom!1right-hand panel of Figure 4 shows the model with Teff \K, in which the thermal and photoionization regions15,000
of helium merge, which reduces to D1.25 around!1 R

*
.

We Ðnd that atmospheric regions with below 4/3 are!1absent in models with K. For the latter, theTeff [ 16,000
partial ionization of He` causes a minor decline in but!1,which exceeds 4/3 throughout the entire model atmosphere.

7.2. Model Gravity Dependence
A comparison of for models with extended atmo-!1spheres reveals that their dynamic stability, according equa-

tion (67), strongly depends on or the ionizing stellarTeff,radiation Ðeld. However, di†erences in with depth in!1these models also depend on the gravity acceleration.
Figure 5 shows the contour map of in the!1 (log P

g
, T

e
)

plane. We compute with for models with 6000!1 Trad\ Teff(top panel), 8000 (middle panel), and 11,000 K (bottom panel),
by setting For K, and between 0.1W \ 12. Teff \ 6000 P

gand 1 dyn cm~2, the minima occur for!1 2000 \ T
e
\ 8000

K. This region marks the upper atmospheric layers where
in the model with log g \ 1.0 (Fig. 4,[6 ¹ log qRoss¹ [4

top right panel). The Ðlled diamonds in the top panel of
Figure 5 show the values of this model, while the(log P

g
, T

e
)

Ðlled triangles and squares are plotted for models with
log g \ 0.5 and 0.0, respectively. The plots reveal that the

values in layers of small optical depth and K!1 T
e
¹ 4000

are not dependent on log g, and assume comparable values
determined by the local gas pressure. However, in layers
with where K, assumes veryqRoss[ 23, T

e
[ Teff \ 6000 !1di†erent values ranging between 1.6 and 1.36, but which

decrease toward smaller log g values. The same trend is
noticeable in the contour map for K. The!1 Teff \ 8000
Ðlled diamonds are shown for log g \ 2.0, the triangles for
1.5, and the squares for 1.0. Around (whereqRoss\ 23 T

e
^

decreases to below unity toward smaller log gTeff), !1values, as a result of enhanced partial photoionization of
hydrogen. This also reveals that models computed for lower

FIG. 5.ÈTop : Atmospheric models of supergiants with KTeff \ 6000
plotted in the plane, for three gravity accelerations of(log P

g
, T

e
)

log g \ 1.0 (diamonds), 0.5 (triangles), and 0.0 (squares). The solid lines
show the contour map of computed with NLTE for and!1, Trad \TeffThe run of in the outer atmospheric layers, withW \ 12. !1 T

e
^

K, is very similar. The models di†er more in the deeper layers,4000È5000
where di†erent NLTE values are assumed. In layers with!1 T

e
^Teff(around decreases toward smaller log g values because the lines ofR

*
), !1equal decrease parallel with the local structure. In deeper!1 (log P

g
, T

e
)

layers (below where values evaluated with NLTE ioniza-R
*
), T

e
[Teff, !1tion stay above 4/3. In these layers, LTE ionization calculations with Tradset equal to are required. Middle : Three models with K,T

e
Teff \ 8000

plotted for log g \ 2.0 (diamonds), 1.5 (triangles), and 1.0 (squares). The
NLTE contour map is computed for K. In layers near!1 Trad\ 8000 R

*assumes values below 4/3. The map reveals that in models(T
e
^Teff), !1with log g below 1.0 these layers will assume even smaller values,!1because their contours run parallel with the lines. Stable!1 (log P

g
, T

e
)

hydrostatic solutions cannot be computed for these small gravity acceler-
ations. Bottom : Three models with K, plotted for log g \ 3.0Teff \ 11,000
(diamonds), 2.5 (triangles), and 2.2 (squares). In layers near theR

*
(T

e
^ Teff)contour map varies perpendicular to the atmospheric structure varia-!1tions with gravity of the models. The layers above assume valuesR

*
!1around 4/3. Since hydrogen becomes nearly fully ionized, the upper

atmospheres are more stable compared to the models with Teff \ 6000
and 8000 K.
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log g values would assume even smaller values in the!1optically thin region of the atmosphere. However, for log g
values below 1.0 we could not converge models to a hydro-
statically stable solution with K. This resultsTeff \ 8000
from the outward-directed radiation pressure, which
strongly increases the atmospheric density scale height with
smaller gravity acceleration, and which reduces toS!1Tbelow 4/3. In the next section we show that the inte-S!1Tgral yields the atmospheric gravity values for which hydro-
static models of a given become unstable.TeffThe bottom panel of Figure 5 shows the contour map!1for K. The partial hydrogen ionization region,Teff \ 11,000
with small values, occurs at high kinetic pressures of!1because of the increased radiation tem-log P

g
^ 1.5,

perature. The decrease of in the partial ionization region!1of helium is also noticeable at these pressures around T
e
^

16,000 K. Three atmospheric models are plotted for
log g \ 3.0 (Fig. 5, diamonds), 2.5 (triangles), and 2.2
(squares). However, the latter has been extrapolated from
the former two models. The detailed contour map reveals
that the extrapolation does not lower to appreciably!1smaller values (i.e., to below unity) in the atmosphere. This
results from hydrogen becoming nearly fully ionized by the
incident radiation Ðeld, whereby assumes values around!14/3, also shown in the bottom left panel of Figure 4.

7.3. Stability of Model Atmospheres
We evaluate for our grid of model atmospheres.S!1TWith dV \ [do/o2, equation (67) transforms to

S!1T \ /oRo* !1(Pt
/o)d ln o

/oRo* (P
t
/o)d ln o

, (68)

where is the density of the outermost atmospheric layer,oRand is the density at the base of the stellar envelope. Ino
*layers of very high optical depth, beyond the partial H and

He ionization zones, becomes locally constant, and!1 S!1Tassumes an almost constant value. The models are dynami-
cally stable against radial mechanic perturbations when

exceeds 4/3. In general, we Ðnd that this condition isS!1Tvalid for models that we can converge to a stable solution.
However, toward smaller log g, can decrease to valuesS!1Tvery close to 4/3.

Figure 6 shows the run of with (thin solid!1 log qRosslines). The corresponding changes in (thick solid lines)S!1Tare shown by integrating over the atmosphere with equa-
tion (68) to the density at this optical depth. The atmospher-
ic density structure of these cool supergiants is also shown
for di†erent log g values of 0.5 (solid lines), 1.0 (short-dash-
dotted lines), 1.5 (long-dashed lines), and 2.0 (long-dash-
dotted lines). For these small gravity accelerations, density
inversions occur by the increase of continuum opacity in the
hydrogen ionization region, which causes the outward-
directed radiative pressure gradient to exceed the gravi-
tational pull. The condition of hydrostatic equilib-
rium therefore requires an outward-increasing kinetic
pressure (for a review see Maeder 1992). Pressure inversions
occur in our models with K and5250 ¹ Teff ¹ 8250
0.0¹ log g ¹ 1.5. The density-inversion layers occur at
smaller optical depth with increasing because theTeff,thermal hydrogen ionization region displaces outward.

Our calculations demonstrate that NLTE ionization of
hydrogen in the upper atmospheric layers of cool and
extended atmospheres strongly diminishes to belowS!1T

4/3. The value of at a given depth point in Figure 6 is aS!1Tmeasure of the dynamic stability of the entire atmosphere
above this point. A comparison of atmospheric conditions
for di†erent between 5500 and 8500 K reveals thatTeffchanges in the radiation temperature by 1000 K strongly
inÑuence the behavior of with depth. The partialS!1TNLTE ionization region of hydrogen displaces to higher
depths by raising from 5500 to 6500 K (Fig. 6, topTeffpanels). The minimum of moves deeper into the atmo-!1sphere, and consequently assumes smaller valuesS!1Taround these depths. An integration of our model with

K and log g \ 0.5 to higher depths yields aTeff \ 6500
strong decrease of to below 4/3 aroundS!1T log qRoss\1.5 (top right panel). This partly results from the density
inversion that occurs around these depths. The stability
integral equation (68) is determined by the local behavior of

and the atmospheric pressure and density structure.!1Toward larger optical depths increases rapidly,S!1Tbecause assumes local values above 4/3 (dotted horizon-!1tal line), and the density increases steeply. Above qRoss^1000, the stability integral assumes almost constant values
of ^1.37 at the base of the stellar envelope. The integration
reveals that this supergiant model, with very low gravity
acceleration, is dynamically stable, because the deeper
envelope strongly contributes to the overall stability inte-
gral. However, we could not converge a model with Teff \6500 K and a smaller log g of 0.3 to a stable solution.
Models with very small gravity yield values below 4/3S!1Twhen integrating equation (68) to the base of the stellar
envelope.

Toward higher of 7500 K (Fig. 6, bottom left panel) weTeffcompute that the minimum of due to NLTE ionization!1displaces farther down the atmosphere, whereas the thermal
H and He ionization regions occur at lower densities, higher
in the atmosphere. However, in this model of higher Teff,but for the same log g \ 0.5, the gas density and pressure
also diminish. Therefore, the inward integration of the local

causes a smaller decrease for at comparable optical!1 S!1Tdepths, although assumes locally very small minimum!1values of D0.8. On the other hand, we Ðnd that by inte-
grating this model of increased to very high depths atTradthe base of the envelope yields a value of 1.34, or onlyS!1Tmarginally above 4/3. Stable models with log g below 0.5
could not be converged because falls to below 4/3 inS!1Tthe deepest layers. In general, we Ðnd that models with
increased (or become unstable toward higherTeff Trad)gravity values because drops to below 4/3. ForS!1T Teff \8000 K a stable solution is possible when only log g º 1.0
(Fig. 6, bottom right panel), whereas for K weTeff \ 5500
can converge stable models for log g º 0.0.

7.4. Atmospheric Instability Regions in Cool Supergiants
Stable models of the same gravity toward higher yieldTeffsmaller values at the base of the atmosphere, which isS!1Tnoticeable by comparing the four panels of Figure 6. For a

given the stability integral increases with log g, whichTeffdemonstrates that the deeper regions of compacter models
have a strong inÑuence by stabilizing the overlying atmo-
sphere. Toward very high log g values, the gravity pull
e†ectively balances the radiation pressure gradient, and the
density inversion region vanishes. However, our NLTE cal-
culations of reveal a remarkable property :S!1T S!1Tassumes very small values, around unity, down to the base
of the atmosphere (up to for models withqRoss ^ 100) Teff
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FIG. 6.ÈBehavior of (thin lines) and (bold lines) with optical depth in envelope models of cool supergiants for di†erent gravity accelerations. Here!1 S!1Tis integrated to the density at the corresponding optical depth. We assume and for the computation of above Higher gravityS!1T Trad\Teff W \ 12 !1 R
*
.

models are more stable because increases for a given at the base of the envelope with increasing log g \ 0.5 (solid lines), 1.0 (short dash-dotted lines),S!1T Teff1.5 (long-dashed lines), and 2.0 (long-dash-dotted lines). For a given log g, toward higher decreases at the base of the envelope to values close to 4/3Teff, S!1T(dotted horizontal line). Models with log g \ 1.0 are unstable for K. The model with K and log g \ 1.5 (bottom right panel,Teff [ 8000 Teff \ 8500
short-dashed lines) is also shown. The partial ionization zones of hydrogen and helium, where locally decreases, are labeled. For and 7500 K,!1 Teff \ 6500

assumes minimum values down to the base of the atmosphere due to partial NLTE and LTE H and He ionization, combined with theS!1T (log qRossD 1.5)
density- and pressure-inversion regions of these models. Note the near gravity independence for these minima in the models with K (see text).Teff \ 6500

around 6500È7500 K, practically independent of log g.
Models with higher or lower (of the same gravity), yieldTefflarger values at these depths, or they have more stableS!1Tatmospheres.

To compare the run of and in models of di†erent!1 S!1Tand gravity, we plot the density scale in Figure 7, ratherTeffthan optical depths. The thin drawn lines show with the!1,deep minimum due to NLTE ionization of hydrogen,
whereas the smaller minima at higher densities are due to
the LTE ionization zones. The curious loops in this scale
result from the density inversion for ln o between [24 and
[20. The darker lines show the corresponding depression
in for models with log g \ 0.5 (solid lines) andS!1Tlog g \ 1.0 (dashed lines). For the latter, assumes theS!1Tsmallest minimum of ^1.1 for ln o ^ [24, around Teff \6500 K. In contrast, the value of at the base of theS!1Tmodel exceeds 4/3 ( lno [[19), but it decreases steadily by
further raising in steps of 500 K. In other words, theTeffbase of these supergiant models becomes less stable toward

above 6500 K, whereas their extended atmospheric por-Teff

tions at lower densities tend to become more stable. The
latter is also true for models with below 6500 K, butTeffinstead the deeper envelope further stabilizes the entire
model.

Similar trends occur for models with log g \ 0.5. We
have incorporated the stronger dilution of radiation in these
more extended atmospheres by setting z\ 1.5, or the geo-
metric dilution factor (with eq. [5]) insteadW \ (3 [ J5)/6
of for the calculation of above The minimum in12, !1 R

*
. !1therefore displaces toward smaller depths (see ° 7.1),

because partial ionization of hydrogen due to the more
diluted radiation Ðeld occurs at lower densities. Conse-
quently, assumes smaller values at lower densities.S!1TOur calculations reveal that for models with smaller
gravity, the minimum of occurs for lower densities,S!1Tand vice versa. The dilution of radiation tends to further
destabilize a more extended atmosphere above InR

*
.

deeper layers where the atmosphere stabilizesTrad\ T
e
,

because increases, but assumes a smaller value aboveS!1T4/3 (at the base of the envelope) than for models with higher
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FIG. 7.ÈRun of (thin lines) and (bold lines) in the atmospheric density scale for log g \ 0.5 (solid lines) and 1.0 (dash-dotted lines). assumes!1 S!1T S!1Tminimum values (below 4/3) in the atmosphere of stable models with K. We assume for the computation of above6500 ¹Teff ¹ 7500 Trad\ Teff !1 R
*
.

Toward smaller gravity acceleration the destabilizing regions, because of partial NLTE ionization of hydrogen, occur at lower density with the dilution of the
ionizing radiation Ðeld (see text).

gravity. Lower gravity models are less stable, and the
regions that contribute to their destabilization occur at
smaller densities in the atmosphere. These regions contrib-
ute most strongly in supergiants with K,6500 ¹ Teff ¹ 7500
as the result of partial non-LTE ionization of hydrogen
with and the partial LTE ionization of hydrogenTrad^ Teffand helium, combined with the complex mean density and
pressure structure of such extended atmospheres.

8. DISCUSSION

In a study of the evolution of luminous blue variable
(LBV) stars Stothers & Chin (1994) evaluated in theS!1Touter part of the stellar envelope and found that massive
stars, evolving o† the main sequence, develop dynamically
unstable outer layers, for which eruptive mass loss can
result. Humphreys & Davidson (1994) pointed out that the
low surface temperature of 12,000 K at which the Ðrst insta-
bility occurs in these calculations appears to be underesti-
mated, because of the absence of very luminous late B- or
A-type stars. We note that LTE calculations for our model
with K and log g \ 2.0 indeed show aTeff \ 12,000
decrease of to below 4/3 over a large fraction of the!1

atmosphere with (see Fig. 5 of Lobel et al. 1992).qRoss\ 23Toward higher hydrogen fully thermally ionizes, andTeff,hence increases above 4/3. However, our present NLTE!1calculations of show that stable supergiant models with!1around 12,000 K have rather stabilizing outer layersTeff(with slightly above 4/3 ; see Fig. 4) because the partial!1photoionization region where occurs deeper.x6 ^ 0.5
We note, however, that we have set the radiation tem-

perature equal to and or in ourTeff W \ 12 (3[ J5)/6
calculations. More accurate computations of the detailed
NLTE ionization balance, in which varies with heightTradover the atmosphere and radiation pressure also dilutes
with distance, are required to determine the precise bound-
ary parameters at which the models become dynamically
unstable in the H-R diagram. Such calculations require
““ case studies ÏÏ of various individual supergiants. These
stars can have very fast winds and high mass-loss rates,
which strongly inÑuence the atmospheric extension. Like-
wise, we expect that small deviations from an ““ average ÏÏ
radiation temperature (but which is proportional to Teff)will occur because of variations in the local opacity sources
at di†erent atmospheric levels. This dependency shouldTrad
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be obtained from accurate observations of their spectral
energy distributions.

Our present calculations, which omit these further reÐne-
ments, show, however, a clear trend in which assumesS!1Tminimum values below 4/3 in stable models of supergiants
with K. These atmospheres exist in the6500 ¹Teff ¹ 7500
extension of the Cepheid instability strip, which has well-
deÐned borders in the H-R diagram. In this area, the smal-
lest values for occur down to the base of theseS!1Tatmospheres, practically independent of the gravity acceler-
ation. This indicates the possible relation between pulsation
variability and dynamic destabilization mechanisms, caused
by the decrease of Soukup & Cox (1996) found withS!1T.
time-dependent calculations that the atmospheres of these
massive stars become unstable to radial pulsations. They
also mention that helium ionization dominates as the
driving mechanism, and the contribution from the (thermal)
hydrogen ionization zone becomes signiÐcant below 5000
K. Long-term spectroscopic and photometric observations
of o Cas, with K andTeff \ 6500È7250 log (L

*
/L

_
) \

5.6È5.9, demonstrate that nonradial pulsation modes are
excited in these extended atmospheres (Lobel et al. 1994). In
a theoretical study of oscillations in cool stars with

Shibahashi & Osaki (1981) found thatlog (L
*
/L

_
)\ 5,

stable nonradial modes with l\ 10 can be excited by the
ionization zones. When the hydrogen and helium ionization
zones are situated too shallowly they cannot excite radial
pulsations, but they can drive nonradial modes, which are
trapped near the stellar surface. For dynamically stable
models, pulsation driving occurs in regions where !3approaches unity. Lobel et al. (1992) demonstrated that for
conditions of cool supergiant atmospheres, the decrease of

strongly couples with the decrease of in the partial!3 !1ionization zones. These considerations imply that the
minima we compute for and for low-gravity stars!1 S!1Tin the extension of the Cepheid strip can be related to the
excitation of stable nonradial pulsations by partial NLTE
ionization of hydrogen in the optically thin part of the
atmosphere.

Furthermore, Shibahashi & Osaki (1981) mention con-
vectively unstable zones located just below the photosphere
due to hydrogen ionization in their model with Teff \ 7080
K. In the model with K, the ionization regionTeff \ 8000
emerges above the photosphere, which causes a strong dif-
ference between the modal properties of the two models. In
hydrodynamic simulations of compressible convection,
which consider the e†ects of partial (LTE) ionization of
hydrogen, Rast (1992) mentions the importance of coupling
convection with pulsations in Cepheids. From an obser-
vational point of view, we note that photospheric absorp-
tion lines of yellow hypergiants display an unusually large
macrobroadening, which cannot be attributed to rapid
rotation (i.e., large v sin i values) for these evolved and very
extended stars. For example, line-proÐle modeling of high-
dispersion observations in o Cas yield macrobroadening
velocities of D25 km s~1 (see Fig. 3 of Lobel et al. 1998).
Fast large-scale velocities are possibly linked with
ionization-induced formation of supersonic vertical Ñows
(plumes), simulated for cool low-luminosity stars (e.g., Rast
& Toomre 1993).

Another remarkable aspect of yellow hypergiants (for a
review see de Jager 1998) are ““ eruptions,ÏÏ which occur on
timescales much longer than the pulsation quasi period
(about half a century, say). In an outburst of 1945È1946, o

Cas (F8p) suddenly dimmed and displayed TiO bands in its
spectrum, characteristic of the photospheric temperatures
of M-type stars. Within a couple of years (1947 April), the
star brightened up by nearly a magnitude, and a mid G-type
spectrum was recovered around 1950. In 1985È1986 the star
showed a larger-than-average amplitude in the light curve,
which could be associated with shell ejection events
(Zsoldos & Percy 1991). Pulsational driving with the
occurrence of strong convective motions may excite
unstable modes with very fast growth rates, resulting in
episodic mass ejection. If such a mechanism can account for
eruptions of yellow hypergiants, we expect that it is sub-
stantially di†erent for the eruptions of LBVs, because
strong convective motions induced by partial hydrogen ion-
ization are not expected for these stars, and we compute

values above 4/3 over the entire atmosphere of hydro-S!1Tstatically stable models with K.Teff [ 16,000
In a series of papers, Nieuwenhuijzen & de Jager (1995),

de Jager & Nieuwenhuijzen (1997), and Nieuwenhuijzen &
de Jager (2000) presented strong theoretical and obser-
vational indications for the existence of a region in the
upper H-R diagram where the atmosphere of yellow hyper-
giants become unstable. The cool boundary of the ““ yellow
evolutionary void ÏÏ occurs for blueward-evolving massive
supergiants at K and Evolu-Teff ^ 8300 log (L

*
/L

_
)[ 5.6.

tionary calculations show that these stars are expected to
evolve along tracks of nearly constant luminosity, below the
Humphreys-Davidson limit. They evolve blueward because
massive stars shed copious amounts of mass to the
circumstellar/interstellar environment in the red supergiant
phase. During redward evolution, the very high mass-loss
rates reduce the stability of the convective layer, and below
a critical envelope mass it contracts into a thinner radiative
envelope, which causes rapid blueward evolution. Only for
a limited range of initial masses do stars become red super-
giants and evolve back far blueward. A possible candidate
for such a scenario is HR 8752, for which Israelian, Lobel, &
Schmidt (1999) found an increase of the photospheric tem-
perature by 3000È4000 K, based on high-resolution spectra
collected over the past 30 years. It is suggested that recur-
rent eruptions in yellow hypergiants occur when these stars
approach the cool boundary of the void, and ““ bounce o† ÏÏ
redward. The bouncing against the void may also explain
why most of the cool luminous hypergiants cluster near its
low-temperature boundary, while the identiÐcation of
hypergiants of later spectral type, possibly such as VY CMa
(of M type), is seldom.

In their analysis of atmospheric acceleration mechanisms,
Nieuwenhuijzen & de Jager (1995) show that stable solu-
tions cannot be computed for the atmospheres of blueward-
evolving yellow hypergiants at the low-temperature
boundary of the void. This is a consequence of a time-
independent solution of the momentum equation, which
considers the Newtonian gravity acceleration derived from
the evolutionary mass, the gas, radiation, and turbulent
pressure gradients, and the momentum of the stellar wind.
The latter requires the observed mass-loss rate. An
““ e†ective acceleration ÏÏ for the atmosphere is obtained iter-
atively, but becomes negative at the cool border of the void.
The outward-directed net force causes an unstable atmo-
sphere around K. We note that their momen-Teff \ 8300
tum equation incorporates the important compressibility
e†ects due to thermal ionization by the decrease of in the!1adiabatic sound velocity, and of the isothermal and iso-
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choric factors and in the gas-pressure gradient. We(so s
T
)

suggest that the determination of instability boundaries for
the void be further improved with the NLTE calculations of

we present. It is important to note that in our computa-!1tions the minimum of for stable models with lowestS!1Tgravity acceleration occurs around K, whichTeff \ 6500
does not coincide with the low-temperature border of the
void. However, there is an overlap because S!1Tapproaches values very close to 4/3 in low-gravity models at
this border. This suggests that the minima we compute for

are rather linked with the driving of stable nonradialS!1Tpulsation modes for the atmospheres of yellow supergiants
in the extension of the Cepheid instability strip, whereas the
void can result from a particular combination of various
acceleration mechanisms, combined with the decrease of the
overall stability by the larger atmospheric compressibility
due to partial NLTE and LTE ionization. The high mass-
loss rates observed for these streaming atmospheres are also
determined by the sonic point, which is situated inside the
photospheres of cool massive supergiants. The dynamics of
such extended atmospheres must therefore be linked with a
prominent mechanism that drives these atmospheric pulsa-
tions, and that provides the momentum for their supersonic
winds.

Finally, we remark that more deÐnitive conclusions
about atmospheric variability mechanisms should be
obtained with fully time-dependent hydrodynamic simula-
tions for a number of prototypical hypergiants, such as o
Cas. Our analytical approximations are useful to evaluate
important hydrodynamic quantities such as the adiabatic
sound speed in conditions of NLTE, withoutvad2 \!1P

t
/o

having to numerically solve for large systems of nonlinear
balance equations. With this analytical work we also
provide a well-founded basis for more sophisticated
numerical hydrodynamic calculations. Time-dependent
codes that simulate the pulsation of extended atmospheres
(i.e., as described by Bessell, Scholz, & Wood 1996 ; Sasselov
1993) could be adequately updated for hydrodynamic
NLTE e†ects without the loss of their numerical efficiencies.
With the present study we demonstrate that such advanced
calculations cannot be based on the usual assumption of
local thermodynamic equilibrium. In extended atmo-
spheres, the thermodynamics of nonlocal equilibrium is
required, and ultimately, these calculations also ought to
consider nonequilibrium thermodynamic processes for rea-
listic dynamic modeling.

9. CONCLUSIONS

1. We present new expressions for the Ðrst generalized
adiabatic index and the heat capacities that are required!1for the study of dynamic stability of supergiant stellar atmo-
spheres. Our equations consider important NLTE e†ects on
the local ionization state by an incident and diluted radi-
ation Ðeld, not in equilibrium with the local kinetic gas
temperature. We demonstrate analytically that our more

general expressions, which are also valid for multi-
component gas mixtures, simplify to the classic formulae in
which the radiation and kinetic temperature equilibrate.

2. From a numerical application of our formalism to a
grid of supergiant model atmospheres with solar abundance
and K, we Ðnd that the local values of4000 ¹ Teff ¹ 20,000

become very small, below 4/3, over a large fraction of the!1atmosphere for models with between 7000 and 8000 K.TeffThis results from the incident radiation Ðeld with a tem-
perature of the order of the stellar e†ective temperature,
which primarily causes partial photoionization of hydro-
gen. These regions displace deeper down the atmosphere
with raising whereas the thermal partial ionizationTeff,regions, at the base of the atmosphere, displace outward.
This combined e†ect causes the deep minimum in the local
values of to occur for these cool star atmospheres.!1Around these e†ective temperatures, partial NLTE ioniza-
tion causes very high atmospheric compressibilities, by
which can even decrease to below unity.!13. Numerical evaluations of LedouxÏ stability integral

down into the stellar envelope demonstrate thatS!1T S!1Texceeds 4/3 in supergiant models for which we can compute
a hydrostatically stable solution. Toward smaller gravity
accelerations decreases, and models become unstableS!1Twith at the base of the envelope. Stable modelsS!1T \ 4/3
with smaller atmospheric gravity assume smaller S!1Tvalues, and LedouxÏ stability integral veriÐes that models of
higher destabilize at increasingly larger gravity valuesTeffbecause of the enhancement of radiation pressure.

4. Most importantly, our calculations reveal that for
stable supergiant models with K,6500 ¹ Teff ¹ 7500 S!1Tassumes minimum values, below 4/3, over a very large frac-
tion of the atmosphere down to its base. Around Teff \K this minimum occurs practically independently of6500
the atmospheric gravity acceleration. These e†ective tem-
peratures should be considered valid only within a case
study for Kurucz atmospheric models. For a given inTeff,atmospheres of increasingly smaller gravity, assumesS!1Tsmall values in layers of increasingly lower density because
of enhanced partial ionization with the dilution of the radi-
ation Ðeld. This corresponds to dynamically destabilizing
regions, extending over an increasingly larger geometric
fraction in the upper atmospheres of more massive cool
supergiants.
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models and helpful discussions. The referee is thanked for
several useful comments. This research is supported in part
by an STScI grant GO-5409.02-93A to the Smithsonian
Astrophysical Observatory.
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APPENDIX

The Ðrst adiabatic index is deÐned by the adiabatic thermodynamic derivative,

!1 4
AL ln P

t
L ln o

B
ad

, (A1)

which can also be expressed by combining three thermodynamic quantities,

!1\ c
Pt
c
v

so , (A2)

where and denote the heat capacity at constant volume and at constant total pressure, and the isothermal factor,c
v
, c

Pt
, sorespectively. The total pressure, including the radiation pressure, is given by the equation of state,

P
t
\ P

g
] Prad\ NkT

e
(1] x6 )o ] 13aW T rad4 , (A3)

where k is the Boltzmann constant, N is the total number of particles per unit mass, and a is the radiation density constant.
Here W is the geometric dilution function for the radiation pressure with distance d from the stellar surface At the surfaceR

*
.

and hence withz\ d/R
*

\ 1, W (z\ 1)\ 12,

W (z) \ 1
2
A
1 [

S
1 [ 1

z2
B

. (A4)

The ionization equation, modiÐed for photoionization from the ground level for every element i, is (° 2.1)

x
i

1 [ x
i
x6 \ C

i
W

T
e
1@2
o

Trad exp
A
[ I

i
kTrad

B
, (A5)

where is a constant, and the ionization fraction of element i, which is singly ionized from the ground level, withC
i

x
iionization energy by the incident radiation Ðeld of temperature We denote the mean ionization fraction of the mixtureI

i
, Trad.with m elements,

x6 \ ;
i/1

m l
i
x
i
, (A6)

where is the element abundance having particles per unit mass, and or Hence, the totall
i
\ N

i
/N N

i
£

i
l
i
\ 1 N \ £

i
N

i
.

number of electrons per unit mass is N
e
\ x6 N.

When the radiation temperature and the kinetic gas temperature are independent quantities, the speciÐc heatTrad T
ecapacity (per unit mass) at constant volume v (or density, since v\ 1/o) is deÐned as the sum of the internal energy derivatives

to both independent temperatures,

c
v
4
A Le
LT

e

B
o,Trad

]
A Le
LTrad

B
o,Te

. (A7)

The internal energy function in equation (A7) is given by

e\ NkT
e

C3
2

(1] x6 )] ;
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m
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i

A
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i

I
i

kT
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i
0 w
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0
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BD

] aW T rad4
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, (A8)

where denotes the neutral particle fraction. The two electronic energy terms of equation (A8) include the partitionx
i
0 \ 1 [ x

ifunctions, which are deÐned by and where is theu
i
\ £

r/0= g
r,i exp ([s

r,i/kT
e
) w

i
\ £

r/0= g
r,i(sr,i/kT

e
) exp ([s

r,i/kT
e
), g

r,istatistical weight of the rth excitation level. The partition functions of the neutral fractions are indicated with the zero (0)
superscript.

In conditions of stellar atmospheres, the kinetic and ionic terms largely outweigh the electronic terms, and since we assume
ionization from the ground level only, the electronic terms can be neglected, yielding

e\ 3
2

NkT
e
(1] x6 ) ] N ;

i/1

m
l
i
x
i
I
i
] aW T rad4

o
. (A9)

The speciÐc heat capacity at constant total pressure in equation (2) is deÐned as the sum of the derivatives of the enthalpy
function to both independent temperatures,h \ e] P

t
/o

c
Pt

4
A Lh
LT

e

B
Pt,Trad

]
A Lh
LTrad

B
Pt,Te

, (A10)
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where

h \ 5
2

NkT
e
(1] x6 ) ] N ;

i/1

m
l
i
x
i
I
i
] (4/3)aW T rad4

o
. (A11)

We proceed by deriving the detailed expressions for the individual terms of equations (A7) and (A10).
In equation (A7) the kinetic temperature derivative at constant density yields

A Le
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B
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C
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A Lx6
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D
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ALx
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and the radiation temperature derivative yields

A Le
LTrad

B
o
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e

A Lx6
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] N ;

i
l
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I
i
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B
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] 12ahNk(1] x6 ) , (A13)

where a is the ratio of the radiation pressure and the kinetic gas pressure, and h is the ratio of the local kineticPrad/P,
temperature and the temperature of the incident radiation Ðeld, T

e
/Trad.In equation (A10) the kinetic temperature derivative at constant total pressure yields

A Lh
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and the radiation temperature derivative casts by using intoPrad\ 13aW T rad4
A Lh
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Hence, both heat capacities are obtained from the detailed evaluation of two thermodynamic quantities in equations (A12)
and (A13) :

ALx
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e

B
o

and
A Lx

i
LTrad

B
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, (A16)

and with equation (A6),

A Lx6
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Four thermodynamic quantities are to be evaluated in equations (A14) and (A15) :
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for which also
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1. The kinetic temperature derivative of the ionization equation (A5) at constant density and radiation temperature yields,
after grouping terms and some rearrangement,
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which casts with equation (A17) (multiplying both sides with after factorization, into£
i
l
i
),
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We obtain by inserting equation (A21) in equation (A20) for every element i,
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Equation (A12) reduces, after inserting equations (A21) and (A22) and grouping terms, to
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2. Analogously, the radiation temperature derivative of the ionization equation (A5) at constant density and kinetic
temperature yields, after grouping terms and some rearrangement,
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which casts with equation (A17), after factorization, into
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We obtain by inserting equation (A26) in equation (A25) for every element i,
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Equation (A13) reduces, after inserting equations (A26) and (A27) and grouping terms, to
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Hence, with equation (A7) we obtain the total heat capacity at constant volume by summing equations (A23) and (A28), and
grouping terms :
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where we normalize the speciÐc heat capacity to the gas constant to obtain dimensionless units. When we denote
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and deÐne the functions Q and G for element i as
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equation (A29) can formally be expressed as
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Equations (A30)È(A33) enable a similar compact form for the detailed expression of the heat capacity at constant total
pressure, which we obtain below.

3. The kinetic temperature derivative of the ionization equation (A5) at constant total pressure and radiation temperature
yields, after grouping terms and some rearrangement,
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which casts with equation (A19), after factorization, into
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We obtain by inserting equation (A36) in equation (A35) for every element i,
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for which we note the formal resemblance to equation (A22), apart from an extra factor in the numerator and the(1 ] £
i
l
i
x
i
)

second term of the denominator.
4. The kinetic temperature derivative of the density at constant total pressure and radiation temperature results from

di†erentiating the equation of state (eq. [A3]),
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5. The radiation temperature derivative of the ionization equation (A5) at constant total pressure and kinetic temperature
yields, after grouping terms and some rearrangement,
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which casts with equation (A19), after factorization, into
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We obtain, by inserting equation (A40) in equation (A29) for every element i,
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for which we note the formal resemblance to equation (A27), apart from the extra terms with 4a in the numerator, and an
extra factor in the second term of the denominator.(1 ] £
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6. The radiation temperature derivative of the density at constant total pressure and kinetic temperature results from
di†erentiating the equation of state (eq. [A3]) :
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Hence, with equation (A10), we obtain the total heat capacity at constant total pressure by summing equations (A14) and
(A15), and grouping terms :
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where we normalize the speciÐc heat capacity to the gas constant to obtain dimensionless units.
When inserting equations (A36)È(A38) and (A40)È(A42) in equation (A43), and deÐning with equations (A30)È(A32) the

function for element i,H
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we obtain, after grouping terms, the formal expression
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