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Abstract. The hypergiant ρ Cas is known for its variable rate
of mass loss, with an average value of about 10−5 M� y−1, and
the supersonic value for the line-of-sight component of the mi-
croturbulent velocity, about 11 km s−1. Emission components
in Hα suggest the presence of a thermally excited outer atmo-
spheric region.

Since hydrodynamical turbulence in a stellar atmosphere
turns rapidly into a field of shock waves, and shock waves are
known to be able to initiate a stellar wind and heat stellar atmo-
spheric layers, we have tried to predict the rate of mass loss, the
microturbulent velocity component and the observed Hα pro-
file by assuming a stochastic field of shock waves. To that end
we adopted a Kolmogoroffian spectrum of shock waves, char-
acterized by only one parameter: the maximum Mach number
in front of the shocks:M1,max. Behind every shock a thin hot re-
gion originates. Spectroscopically, the thermal motions in these
sheetlike regions cannot be distinguished from the stochastic
hydrodynamic (shock wave) motion component, and therefore
these hot regions add to the line broadening and will also con-
tribute to the observed ’microturbulence’.

We find that it is indeed possible to explain the observed
rate of mass loss (we derived logṀ≈ − 5 (M� y−1)), as well
as the high value for the quasi-microturbulence (we calculated
'12 km s−1). The hot sheets behind the shocks appear to be re-
sponsible for the observed ’microturbulence’; this thermal con-
tribution is much larger than that of the hydrodynamic (shock)
motions, which is only 0.4 to 0.5 km s−1. Non-LTE calculations
of the Hα line profile show that the shocks, in association with
the observed time-dependent variation of Teff can reproduce as-
pects of the variable emission in Hα.

These three aspects of this star, viz. the observed rate of mass
loss, the observed supersonic ’microturbulence’, as well as the
Hα line profile can be simulated by one parameter only: viz.
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M1,max=1.06 to 1.08, a value that characterizes a fairly weak
shock-wave field.
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1. The extreme properties of the hypergiant ρ Cas

The star ρ Cas (F8 Ia+) is a well-known example of the class
of hypergiants. Its luminosity classification (Ia+) means that its
spectral luminosity characteristics are more extreme than those
of class Ia. For ρ Cas the most notorious characteristics are the
extreme luminosity, its irregular pulsations, the variable rate of
mass loss, and the occurrence of displaced emission components
in Hα. Beardsley (1961) was the first to notice that emission and
he ascribed it to a circumstellar shell. In addition, the central
part of the line profile appears to be somewhat filled-in which
suggest excited upper chromospheric layers.

The semiregular small-amplitude variability in brightness
and radial velocity (Sargent 1961), have a typical brightness
fluctuation of 0.2 mag, and an average ’quasi-period’ of 300 d.
(Zsoldos & Percy 1991). Individual values of the quasi-period
range between 280 and 520 d. (Arellano Ferro 1985; Percy et al.
1985; Sheffer & Lambert 1986). Lobel et al. (1994) have studied
the observed variations of brightness and radial velocity during
1970 and concluded that these variations cannot be ascribed to
strictly radial pulsations.

Next to these small variations there are occasionally sudden
larger jumps in brightness, often associated with considerable
changes of the spectral type. This latter phenomenon is not yet
fully understood, but it is usually ascribed either to larger-than-
usual pulsations with a stochastic character, or to excessive mass
loss during relatively brief periods. Either phenomenon leads
to the formation of an outwardly displaced photosphere (we
do not wish to use the term ’pseudophotosphere’), causing an
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Table 1. Data for ρ Cas

Effective temperature Teff = 7190 K
Effective atmospheric accel. geff = 2.8 cm s−2

Line-of-sight microturbulent
velocity component ζµ = 11.1 km s−1

Log of rate of mass loss log Ṁ = -5 ± 0.6 (M� y−1)
Log of luminosity logL/L� = 5.7

increase of the stellar surface area and a consequent decrease of
the effective temperature.

A matter that may need further investigation is the appear-
ance of blueward displaced emission lines; in July 1960 Sar-
gent (1961) observed Ni i emission lines that were blueward
displaced with regard to single absorption lines, with vrad≈25
km s−1. More recent investigations show as a fairly general rule
that the radial velocity measured with the emission lines de-
viates only little from the system velocity (Sheffer & Lambert
1986). An example is the emission line Na i at 4527 cm−1 for
which a velocity of -49 km s−1 has been found (Lambert et
al. 1981). This value, combined with the system velocity (-42
km s−1) yields a residual blueshift of only 7 km s−1. The un-
certainty in these velocities is usually given as 1 km s−1, but
it may be larger due to blends. Lobel & de Jager (1997) have
further studied the blueward displaced (≤10 km s−1) emission
components in neutral lines. They do not share the photospheric
pulsations, and must be ascribed to a stationary detached shell
at some ten to 20 stellar radii from the star.

Published values for the rate of mass loss were summarized
by Lobel et al. (1994); they range between -6 and -3 (logarith-
mic), but the most reliable determinations range between -5.3
and -4.4. The scatter in the data is larger than the mean error of
a single unit weight mass loss determination, which is ±0.37
(de Jager et al. 1988), and therefore seems to be real. A more
recent value (Lobel et al. 1997) is -4.5. That value, however,
seems to be related to a period of strong outward pulsational
motions. In this connection we should note that previously pub-
lished values for the log of the rate of mass loss, amounting to -2
(Climenhaga et al. 1992) and -2.5 (Gesicki 1992) appeared not
to be correct since they are based on a wrong interpretation of
seemingly ’double’ lines that are actually absorption lines with
an emission core (Lobel and de Jager 1997).

The atmospheric properties of the star have been determined
recently by Lobel et al. (1994). We give in Table 1 the data, that
we will use in this paper. The luminosity is taken from Gesicki
(1992).

In this paper we will show that this set of parameters can
be reproduced by assuming a photosphere in which a stochastic
field of shock waves is running outward. The reasons for as-
suming a field of shock waves are, first that ρ Cas must have a
subphotospheric convection region, wherein turbulence devel-
ops, leading to outward running pressure waves. In addition it
is known that any field of hydrodynamic waves in a stellar at-
mosphere transforms rapidly, i.e. within the time of one wave
period, or after having traveled over a distance of the order of

one wavelength, into a field of shock waves. Hence, beyond a
level situated at an average wavelength above the convection
layer, the atmospheric motion field must have turned into a field
of shock waves.

The general properties of the photospheric wave fields for a
number of super- and hypergiants, including ρ Cas, have been
derived by de Jager et al. (1991). Since the energies of the hy-
drodynamic waves are distributed over the wavelengths accord-
ing to a spectrum of turbulence the same must apply to the
field of shock waves. We will assume a Kolmogoroff spectrum,
since some studies have shown that such a spectrum applies
best to stellar photospheres (Dere 1989), and also because the
Kolmogoroff spectrum is the only one that is theoretically justi-
fied for stellar atmospheric conditions. Once having made that
assumption only one parameter is needed for defining all prop-
erties of that spectrum. A suitable parameter is the maximum
Mach number M1,max of the spectrum of shock wave energies.

2. Input data for the ’smooth background atmosphere’

Our input data for the ’smooth background atmosphere’ are
based on an interpolated Kurucz model for the effective temper-
ature and acceleration of the star. A plane model was assumed,
since the atmosphere of this star can be treated as being plane,
in spite of its extent, because of the star’s size relative to the
atmospheric thickness (de Jager 1981, p. 195). Onto this ’back-
ground atmosphere’ we superpose the shock wave field. The
numerous shocks are all followed by relatively thin regions of
temperature enhancements. Therefore the addition of shocks to
the atmospheric model, in the subsequent phase of this inves-
tigation, will on the average increase the average photospheric
temperature, and integration of that new atmospheric model will
yield a higher effective temperature value than the input value.

Therefore it is advisable to start with a lower value for the
input effective temperature, and our approach must be an itera-
tive one: after a first input of suitably chosen values for Teff and
geff we derive the interpolated atmospheric (we call it hence-
forth ’smooth’ or ’smooth background’) model; then we add the
shock wave spectrum, and calculate the stellar flux and effective
temperature for this new (’shocked’) atmosphere. Iteratively we
then search for those input data that yieldTeff and geff values that
agree best with the stellar data given in Table 1. After some trials
one quickly learns how to choose the input values in order to get
rapid agreement with the observed stellar data. There is a slight
degree of ’feedback’, however: the precise values of the needed
input data appear to depend on the assumed shock strengths in
the atmosphere, hence on the input value M1,max of the shock
spectrum. This means that the iterative procedure consists es-
sentially of two weakly correlated acts: the choice of Teff and
geff , followed by the choice of M1,max. The first act should lead
to an effective temperature and effective acceleration that agree
with the observed values, and thereafter the second act should
make two other observational quantities fitting: the rate of mass
loss and the microturbulent velocity component. (We do in this
phase not yet consider the Hα line profile; this aspect will ap-
pear as a bonus from this investigation). Therefore, essentially
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our problem reduces to the question whether one input value for
the shock spectrum can explain three observables: mass loss,
microturbulence, and the Hα line profile.

We next describe the way we calculated the ’smooth back-
ground model’. Before doing that we emphasize that it is not
necessary to select a model in perfect radiative equilibrium, be-
cause the final (’shocked’) model anyway will not obey the ra-
diative equilibrium condition. The problem whether a shocked
atmosphere is in radiative equilibrium (we think it is not) has
not been answered yet and formulating a decisive answer looks
a formidable task.

We started with a Kurucz model of which the Teff and geff

values were closest to the expected final input data, and in that
model we took the temperature values for five logarithmically
equally spaced optical depth values. A spline-type interpolation
function was drawn through the data points log(T (τ ))-log(Teff ),
which yields the function T (τ ) for the adopted Teff and geff val-
ues of this model, and - as we verified - also for the other models
that will be met in the course of this investigation. In doing this
we based ourselves on the experience that photospheric models
have in good approximation the same (T (τ )− Teff )-relation in
any restricted part of the (Teff ; geff ) plane.

The ’smooth background model’ is thereupon calculated as
follows. For an optical depth τRoss=10−6 we calculate start-
ing values for the pressure P and density ρ by solving for
the known T (τ=10−6) value: P=geff×10−6/κRoss. The calcu-
lation is iterative because κ depends on P and ρ. Integration of
dP/dz=geff×ρ and dτ/dz= κ×ρ (where we write κ for κRoss)
then yields the desired ’smooth background’ atmospheric model
as a function of the geometrical depth z and the optical depth
τRoss.

For this atmosphere we also need to know the optical
and geometrical heights of the top level of the convection
zone. This is done by searching for the depth level where
∂(logT )/∂(logP )model=∂(logT )/∂(logP )ad. In deriving the last
quantity the influence of the ionization of H and He is taken into
account.

3. Motion field between shocks

For the following we need relations between the wavelengths
of the shocks (i.e. the vertical distances between two consecu-
tive shocks), in dependence of the shock velocity amplitudes.
To simplify the problem we introduce the following approxi-
mation. For any wavelength of the shocks we assume a one-
dimensional train of identical, equidistant shocks, moving with
constant velocity into the vertical +z-direction, in a homoge-
neous isothermal medium (Fig. 1). The velocity of propagation
is the ’shock velocity’ U , which can be derived from the shock
relations.

The velocity profile is related to a similar density profile. We
write for the log of the density and the shock velocity behind
the shocks logρ(z2) and v(z2). Mathematically, the problem is
then to calculate the functions logρ(z) and v(z) in a isothermal
medium, starting with the above boundary values and for de-
creasing z, and also to find the point z1 where v(z1) = −v(z2).

Fig. 1. A train of equal equidistant shocks in a homogeneous and
isothermal medium

The wavelength of the shock is then z1 − z2. We assume an
isothermal plasma (admittedly incorrect, but we think accept-
able in this phase); hence, we may neglect the energy equation.
The equations of conservation of mass and momentum read:

dρ/dt + d(ρv)/dz = 0. (1)

d(ρv)/dt + d(ρv2 + P )− ρg = 0 . (2)

Introduce d/dt = d/dz×dz/dt = −U×d/dz. Write further
v′ = v/s, U ′ = U/s, s2 = Γ1×P/ρ, where s is the velocity of
sound, and introduce z′ = z/H with the density scale height
H=RT/µg. Equations (1) and (2) then become dimensionless:

dlnρ/dz′ = [Γ1(v′ − U ′)2 − 1/Γ1]−1 , (3)

and

dv′/dz′ = (dlnρ/dz′)/(U ′ − v′) . (4)

We performed a number of numerical integrations and
these yielded interpolation relations between the (dimension-
less) wavelength L/H , the velocity behind the shock v′2, and
the shock velocity U ′, all three quantities in dependence of the
parameters M and Γ. To give an example: for the wavelength
L/H a suitable representation reads:

L/H = Ap(Γ)×(M − 1) + Bp(Γ)×(M − 1)2 , (5)

with

Ap(Γ) = aap + bap×(Γ− 1.5) + cap×(Γ− 1.5)2 (6)

Bp(Γ) = abp + bbp×(Γ− 1.5) + cbp×(Γ− 1.5)2 . (7)

We refrain from listing the values of the numerical quan-
tities aap through cbp. We have derived similar equations for
the relation between the relative velocity behind the shock v′2
and the parameters M and Γ. A third set of interpolation equa-
tions applies to the dimensionless shock velocity U ′. We note
that the quantity M is similar to, and will later be used for, the
maximum Mach number M1, but in the present context it is just
a formal parameter introduced in order to link the wavelength
L/H , the velocity v′2 and the shock velocity U ′ with the values
of Γ andM . By means of these equations we can also find the re-
lationship between the wavelength L/H and the dimensionless
velocity v′2 just behind the shock.
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4. Stochastic spectrum of shock waves

We next calculate the velocity distribution in the atmosphere
defined by a Kolmogoroff spectrum of shock wave energies,
in which M1,max is the maximum Mach number in front of the
shocks. The wavelength corresponding to this Mach number is
called L0. For such a spectrum the relationship between v′2 or
v2 and L is given by

v2(L)/v2(L0) = v′2(L)/v′2(L0) = (L/L0)2/3 . (8)

The velocity variation between two equal shocks with a
wavelength L is a linear saw-tooth profile, with velocity v2 be-
hind the leading shock and v1 in front of the trailing shock (as
shown in Fig. 1). If we call this profile ΥL(z), then the mo-
tion field (still without the contribution of the stellar wind) of a
Kolmogoroff spectrum of shock waves is

vs(z) =
∫ L0

L1

(L/L0)1/3.ΥL(z + φ)dL , (9)

whereφ is a phase with a value between 0 andL, which is gener-
ated by a random procedure. The introduction of this randomly
distributed phase is necessary for simulating the real situation in
a stellar atmosphere. In any spectrum of turbulence the phases
of the various wave components are distributed randomly. In
actual practice, the integration is replaced by a summation. The
final velocity profile in the stellar atmosphere is then given by

v(z) = vs(z) + vw(z) , (10)

where the value of the wind term vw is

vw = Ṁ/4πr2(z)ρ(z) . (11)

Here, Ṁ is the rate of mass loss; r(z) is the distance of the
point z from the stellar centre. We define the stellar radius by
τRoss=2/3.

When the velocity profile is known, one has to derive the
density- and temperature profiles in the shocked atmosphere.
We discuss these matters here for the density and in the next
section for the temperature.

The point we make first is that shocks can accumulate. In the
actual numerical procedure the velocity vs(z) or v(z), according
to Eqs. (9) and (10) is given for a number of discrete z′ points; we
used 250 points per average scale height interval. Because of the
integration (9) there appear a large number of shocks in the v(z)
curve. In order not to overload the program we deleted shocks
with a velocity amplitude < 0.02s (s being the local speed of
sound), which corresponds to the introduction of an artificial
lower limit for L1; we ascertained that the exclusion of these
small shocks does not significantly change the overall results. In
some cases it may happen, because of the discrete character of
the z′ axis, that two or more shocks add at a specific z′ point, and
thus one may even meet the situation (rarely, however) that one
obtains shocks that are stronger than the largest input shock. The
next step consists therefore of ’sorting’ the shocks according to
their z-values, taking into account their possible accumulation,

which leads to new v2(z) values. We will call these sorted shocks
the new shocks.

At this point shock physics enters into the picture. For each
of the new shocks thus obtained we know the velocity amplitude
and from these values we derive the Mach numbers M1 in front
of the shocks with (cf. Gail et al., 1990, Eq. (56))

v2 = ((Θ− 1)/2Θ)×M1×s , (12)

where Θ is the density ratio ρ2/ρ1. For deriving Θ we have to
consider that ionization can be important at the temperatures and
pressures involved. Therefore we use the generalized version
of the Rankine-Hugoniot relations (we abbreviate them as the
’NDJCLA-equations’, Eq. (26) of Nieuwenhuijzen et al. 1993).
These equations can only be solved iteratively. For the first step
of iteration we used the classical Rankine-Hugoniot expressions

Θ = ρ2/ρ1 = ((γ + 1)M1
2)/((γ − 1)M − 12) + 2) , (13)

where γ = cp/cv , calculated for the temperature and pressure
at the relevant level, taking ionization into account (for an ideal
gas γ = 5/3), and

Φ = p2/p1 = (2γM1
2 − γ + 1)/(γ + 1) . (14)

In order to proceed with the second approximation, we use
these quantities for deriving values of γH (cf. Nieuwenhuijzen et
al. 1993 for the definition of γH ) and Γ1 in front and behind the
shocks; these quantities are needed for the NDJCLA-relations.
Only then can the iteration proceed with the generalized NDJ-
CLA relations. The iterative derivation ofM1 fromv2 as outlined
here is straightforward and it appears to converge well. Fig. 3
(in Sect. 5) is a diagram, calculated for an exaggerated case,
M1,max=1.5 in a giant-type atmosphere with loggeff=3 (hence,
not a supergiant), and shows among other things the distribu-
tion of the mass density logρ in a shocked model atmosphere of
this giant star, plotted against the geometrical depth scale. The
depth unit is an ’average scale height’. We note that the value
M1,max=1.5 is for ρ Cas far too large, and also loggeff and the
resulting rate of mass loss are by three orders too large but this
case demonstrates, better than smaller values, what we want to
show.

Once M1, v2 and the other parameters for the new shocks
are known, it is also possible to find the shock velocity U=
v1+s×M1, a quantity that is important for calculating the depth
variation of the temperature (next section). It should also be
known for evaluating the importance of ’shock cannibalism’,
the process according to which larger and hence faster moving
shocks overtake smaller, hence slower ones, and thus become
still larger and faster moving, etc., so that at the very, but in-
deed: very, long run only large shocks tend to remain. To give
an example: for an atmosphere where the waves emerge from
a subphotospheric convection region at τ≈0.3 (the top of the
convection zone in a particular case) the fraction ∼0.9 of the
shocks remains when the shocks have moved from that level
until τ≈0.1.
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5. Temperature distribution in a shocked atmosphere

When the shock parameters such as the density- and pressure-
jumps behind the many shocks are known, the temperature is so
too, because of the equation of state. In the wake of every shock
the temperature excess with respect to the smooth temperature
distribution will decline radiatively. For the cooling time we
assume (Spiegel 1957)

τc = ρcv/16κσT 3 , (15)

where κ is the inverse of the photon free path, σ is Stefan-
Boltzmann’s constant and cv the specific heat per unit mass at
constant volume, calculated including the effects of ionization.
For κ we take the Rosseland absorption coefficient. The trans-
formation of the cooling time into a cooling distance goes via the
shock velocityU . This means that for an observer at a fixed point
the temperature will rise at the shock to a value Tbackground +∆T ,
where ∆T is defined by the shock conditions, while it will de-
crease exponentially with time to the value Tbackground, with the
e-folding time defined by Eq. (15). Any instantaneous T (z)-
picture of the whole atmosphere will show a number of shock-
enhanced temperature jumps ∆T at the respective shocks (each
∆T -value being different, depending on the local shock condi-
tions; (cf. Fig. 2), followed to lower depths by an exponential
decline to Tbackground (while we know that Tbackground increases
with depth). The value of the exponential is in that case U/τc,
where U is the shock velocity of the preceding shock.

This picture becomes more complicated at low tempera-
tures, because the cooling time, which is short at high temper-
atures, increases for decreasing T -values. This poses a compu-
tational problem: suppose that an unshocked atmosphere has a
low temperature, say 4000 K. Then τc �L/U , where L is the
distance between two successive shocks, and U the shock ve-
locity. That means that in this case a next shock will occur in a
medium which still has a higher background temperature than
Tbackground, and consequently the shock conditions will not be
determined by Tbackground, but by the enhanced temperature in
the wake of the preceding shock. The effects of several wakes
may thus accumulate as outlined in the cartoon in the lower
part of Fig. 2. But this accumulation may go, as it appears, to
such an extent that the temperature in the initially low temper-
ature part of the atmosphere would rise to such high values that
τ0�L/U . In that case, however, the above mentioned superpo-
sition of temperature wakes would not occur; we would again
meet the situation of the upper part of Fig. 2, and the atmosphere
would remain overall relatively cool, with only hot sheets af-
ter every shock. Sophisticated solutions should be considered
for this non-linear feedback problem, but for the time being we
are contented with a fairly simple approach. The most direct
solution appears to be to start calculations far outside the at-
mosphere, to eliminate boundary effects. To that end we choose
τstart=10−6. From there on we number the shocks consecutively,
going inward. At a point at a distance dn behind shock no. n,
situated at the geometrical depth zn, we want to know the total
temperature excess due to all shocks preceding that one. We
call Ts(zn) the smooth background temperature at the position

Fig. 2. Accumulation of post-shock high temperature regions. upper:
high temperature; lower: low temperature

zn. The temperature excess just behind the shock is TE(n), and
the radiative cooling time of that shock is τn. At a point at a
distance d1 behind shock no. 1 the temperature of the shocked
atmosphere, due to the influence of shock no. 1 is (Fig. 2):

T (z1 − d1) = Ts(z1) + TE(1) exp(−d1/U1τ1) . (16)

Here, Ts(z1) is still the original ’smooth background tem-
perature’, hence the interpolated Kurucz value. For the part of
the atmosphere behind the second and subsequent shocks, how-
ever, the ’background temperature’ at the position of the shocks
is no longer the ’smooth background’ value but the accumulated
effect of the temperature tails of preceding shocks as illustrated
in Fig. 2, lower part. If D2,1 is the distance between shocks nos.
2 and 1, then the background temperature Tb(z2) at the position
of shock no. 2 is derived from Eq. (16) by writing z2 for z1 - d1

and D2,1 for d1. In general, the ’background’ temperature at the
position of shock no. n is

T (zn) = Ts(zn) +
n−1∑
m=1

TE(m) exp(−Dn,m/Umτm) , (17)

where Dn,m is the distance between shocks n and m. Here,
any value of TE(m) is determined by the local thermodynamic
conditions at the location of shock no.m; the temperature at that
position is influenced by more than just one preceding shock.

The temperature just after shock no. n is found with the
above equation by summing up to m = n instead of to n − 1,
realizing thatDm,m = 0. The temperature between shocksn and
n + 1 at a point z, at distances dn to shocks no. n is

T (z) = Ts(z) +
n∑

m=1

TE(m) exp(−dm/Umτm) , (18)

for all positive dm values. In calculating τn for the nth shock
with Eq. (15) the temperature in that point is derived from Eq.
(17). In calculating the values of TE(n) we used the modified
Rankine-Hugoniot relations (Nieuwenhuijzen et al. 1993).
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Fig. 3. Variation of logT (upper), logρ (middle) and v/s (bottom) in
a shocked atmosphere, plotted on a geometrical depth scale (z/<H>,
where <H> is an average scale height. The model is not for ρ Cas,
but for a giant model with excessive shocks, viz. Teff =7319 K and
geff =103cm s−2, and for M1,max=1.5. These gravity and maximum
Mach values are both far too high for the case of ρ Cas, but are in-
troduced to clearly show the features. The figure shows the run of the
three variables through a ’window’, bordered by z/<H>=2 and 7;
actual calculations were made for z/<H>=0 to 8. The log τR-values
corresponding to the two border-values of z/<H> are printed in the
lower corners.

As may be understood, the summed-up temperature is too
low for the lowest n-values because of the neglect of the influ-
ence of shocks for τ≤10−6 but deeper in the atmosphere, for
larger n, this is no longer the case. Therefore, our procedure
yields unreliable results for very small optical depths, close to
τ = 10−6, but it appears to stabilize after a few units of logτ . In
the atmospheric region of interest to us, above τ∼10−3, which
is 3 τ -decades deeper, such a stable situation appears.

Fig. 3 gives the variation of density, velocity and temperature
along the geometrical (z/Haver) scale, thus calculated, in the
exaggerated example of the shocked atmosphere presented in
Fig. 2.

For the model atmosphere thus obtained, values of the at-
mospheric parameters should be derived. Hence we calculated:

1. The effective temperature Teff . The computations were
simplified by assuming ’gray’ absorption coefficients: κ(λ) =
κRoss, but the error thus introduced was reduced to a second
order one by working strictly differentially (e.g. in our range of
photospheric parameters the difference between the Teff values
between the real and gray atmospheres equals 415±10 K).

2. The effective acceleration geff . This quantity was derived
with geff=(<T/µ)×(dz/dlnρ). It is clear that geff varies over
the depth of the atmosphere. For the time being we do not wish
to include that aspect, but we determine one value that may
be considered representative for the line-forming part of the
atmosphere. Therefore we determined geff by taking the average
over the atmospheric region between τRoss-values of 1 and 0.001.

6. Shocked atmospheric model on a τ -scale

There is an interesting difference between the shocked at-
mosphere plotted on a geometrical scale (z-variable) and the
one plotted on an optical depth scale (τ -variable), because in
the temperature range corresponding to the atmospheres of
fairly cool stars the absorption coefficient κR increases strongly

Fig. 4. The shocked atmosphere for the model parameters from Fig.
3, plotted here on a log(τR)-scale. The curves and ordinates are as in
Fig. 3

with T . The consequence is that the geometrically thin high-
temperature sheets behind the shocks are fairly thick on a τ -
scale. We show this in Fig. 4, which corresponds to the same
model as the one shown in Fig. 3.

This effect is important since one observes an atmosphere
on a τ scale rather than on a geometrical scale. This makes the
high-temperature effects of the atmosphere more pronounced
compared to the model plotted on a geometrical scale. Another
aspect is that the accumulation of shocks causes a region of
enhanced temperature in the upper layers of the atmosphere.
This effect mimics a chromosphere.

In our calculations we have artificially included the dissi-
pation of shock energy, which is done by keeping the shock
amplitude constant with depth. Without dissipation the ampli-
tude would increase with height (because of the decreasing den-
sity) but observations of the depth dependence of microturbu-
lence always show this to be practically constant with height (cf.
Achmad et al. 1991; Lobel et al. 1992, and references therein
to earlier work). This is ascribed to the effect of dissipation. We
neglected the heating by shock dissipation, a process usually
held responsible for the formation of chromospheres in cool
non-magnetic stars. But even with our approach the shocks al-
ready produce effects that simulate a chromosphere, as will be
shown in Sect. 10. The additional effect of shock dissipation
would enhance this phenomenon.

Another consequence refers to the average velocity, ob-
served in the stellar spectrum. While the average velocity of
the star is about zero when integrated over the z-scale, this is
not the case for the velocity plotted on a τ -scale. For that sit-
uation (Fig. 4) one would observe a net outstreaming velocity,
even for the extreme and hypothetical case when the geometri-
cally averaged velocity would be zero. In such a star, that is not
losing mass, one would still observe an outstreaming velocity,
which is of the order of s/3 in the case presented in Figs. 3 and
4.
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Fig. 5. Shocks initiate mass loss

7. Rate of mass loss

A system of sufficiently strong shock waves in an atmosphere
in which the overall density decreases outwardly will lead to a
net outflow of matter. This can be shown by integrating∫ ∞

zstart

ρv dz (19)

over a system of equidistant equal shocks superimposed over
an outward decreasing density profile (Fig. 5). As is clear from
this sketch there is a net outflow of matter.

This is evidently also the case in an atmosphere with a
stochastic distribution of shocks. Therefore shocks can initiate
mass loss.

In calculating the rate of mass loss the question arises from
what level in the atmosphere we should start the outward inte-
gration of the integral (19). We decided to place the lower limit
zstart one scale height above the top of the convection zone. This
decision is based on the idea that the convection zone is the re-
gion where hydrodynamic turbulence is generated and that only
above the convection zone, where waves run outward, these will
develop into shocks after having gone over a certain distance.
For the latter quantity we took one scale height.

Applied to the case of ρCas, we derived a rate of mass loss in
the range of the observed values 10−4.5 and 10−5.2 M� y−1. For
the actual data reference is made to Sect. 9. We consider this
as evidence that a field of shock waves of moderate strength
can initiate stellar mass loss, at least in this type of hypergiant.
We add that we only claim that shocks initiate the process of
mass loss, and not that they govern the velocity profile of the
stellar winds in remote regions above the photosphere because
the shocks will be dissipated over a relatively short distance from
the photosphere, while various other effects such as radiation
pressure may influence the velocity profile of the wind in the
outer parts of the winds.

8. Quasi-turbulence: the notion of microturbulence in a
shocked atmosphere

Fig. 4 shows a shocked atmosphere on a logτ -scale. Not only
the radial velocity varies in a semi-stochastic way, but there are

Fig. 6. The assumed contribution function CL(τR)

also strong fluctuations in the temperature, even over relatively
short distances. This observation brings us to the subject of
the interpretation of the observed values of the ’microturbulent
velocity component’ ζµ.

Methods for the diagnosis of stellar atmospheres and the
determination of the value of ζµ are all based on the implicit as-
sumption of an atmosphere with a smooth T -variation. For such
an atmosphere equivalent widths of a number of lines of vari-
ous strengths are calculated, and ensuing systematic differences
between calculated and observed equivalent widths of lines are
then used to generate new values for quantities such as e.g. ζµ.
The point we make here is that quasi-stochastic temperature
variations such as those shown in Figs. 3 and 4, will influence
line profiles and their equivalent widths in a way similar to the
stochastic hydrodynamic motions, and that it will be hard to
distinguish observationally with conventional diagnostic tech-
niques between these two components.

Therefore we derived a method for predicting the expected
value of the microturbulent velocity component ζµ for shocked
atmospheres, on the basis of these two causes for microturbulent
line broadening: hydrodynamic motions and temperature fluc-
tuations. We assume as known the variation of variables such
as T (τ ), P (τ ), v(τ ), etc. in a shocked atmosphere. In deriving
expressions for the calculation of the expected value of ζµ we
further have to take two facts into consideration:

1. Not the whole range of optical depths of the atmosphere
contributes to the formation of a line. There is a contribution
function CL (Achmad et al. 1991), which varies from one line
to the other, but an average function can be given. We have
derived such an average contribution function from Achmad et
al. (1991) and show it in Fig. 6. As shown in that paper the
contribution functions of different lines can vary, but plotted on
a logτ scale the functions are more or less equal, apart from
a possible horizontal shift along the τ -axis; the most extreme
case being a downward shift over about one unit in the logτ
scale. For the time being we use the diagram of Fig. 6, which
represents the average line-forming region.

2. Velocity- or temperature variations on very large geomet-
rical length scales do not contribute to microturbulent broaden-
ing. There is a microturbulent filter function Fµ(L) or Fµ(k),
where L is the wavelength of the motion field and k = L/2π is
the corresponding wave number. This filter function gives the
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Fig. 7. The filter function Fµ(θ/L) for microturbulence

fraction of the kinetic energy of the motion field at a certain
spatial wavelength that contributes to microturbulent broaden-
ing of a line. Stochastic motions on a short scale of heights will
fully contribute to the microturbulent broadening of lines; hence
for motions with geometrical wavelength L�λ, where λ is the
mean free path of the photons, we have Fµ=1. For motions with
L�λ, one has Fµ=0, while Fµ takes intermediate values for
wavelengths in between. For the macroturbulent filter function
FM the reverse is true.

The microturbulent filter function Fµ has been calculated
by De Jager & Vermue (1979) and was improved by Durrant
(1979) (cf. also de Jager, 1981, pp. 47-49). It appears suitable
to choose a dimensionless ordinate kθ or θ/L, where θ is the
optical scale height, defined by

dz = θ dlogτ . (20)

The microturbulent filter function used by us is given in Fig.
7, in which the abscissa is log(θ/L).

The further procedure is as follows. For defining the ’smooth
atmospheric model’ we introduce the average temperature func-
tion <T (τ )> and the average velocity function <v(τ )> in the
shocked atmosphere. These ’smooth models’ were obtained by
taking the running averages of T (τ ) and v(τ ) over a distance
corresponding to one scale height. We thereupon introduce the
function Φ(τ ), which describes the squared velocities due to the
v- and T -fluctuations (which contribute to ζ2

µ), with

Φ(τ ) = (v(τ )− < v(τ ) >)2 +
8<(T (τ )− < T (τ ) >)

π×µ . (21)

Define next a function Trb(z) that describes which part of the
atmosphere contributes to the observable microturbulent line
broadening:

Trb(z) = Φ(τ (z))×CL(τ (z)). (22)

Next the filterfunction must be introduced. Let F (1/α) be
the filter function, where α is a dimensionless unit of length,
expressed in units of the average shale heightHav. We introduce
a function F being the real part of the Fourier transform of
the field of hydrodynamic/thermal velocity fluctuations, and we
define the function Ψc(α) as

Ψc(α) =

∫∞
0 (F (z/α)×Trb(z)×F (1/α)dτ (z)∫∞

0 F (z/α)×F (1/α)dτ (z)
. (23)

The expected microturbulent velocity component is then
found from

ζµ
2 =
∫ ∞

0
Ψc(α)2dα. (24)

We stress that with the expressions above one finds the value of
the quasi-microturbulence as we may call it: it is the combined
contribution to line broadening by the short-scale variations of
the temperature and by those due to short-scale mass motions. If
one wishes to know the real hydrodynamic component of it (i.e.
the effect of mass motions only), the same expressions should
be used with the exception that the last (the thermal) part of the
r.h.s. of Eq. (21) should be dropped. We have done so (see next
section), and while finding a quasi-turbulence of the order 12
km s−1, we find a hydrodynamic turbulence of only 0.5 km s−1.

9. Application to the case of ρ Cas

We apply the above described algorithms to the hypergiant ρ
Cas. There are five input data: Teff , geff , the maximum Mach
number in front of the shocks M1,max, the rate of mass loss Ṁ ,
and the luminosity L/L�. These will define output values of
Teff , geff , ζµ, vhydr and Ṁ .

We will show that only Teff and M1,max really matter. For
the luminosity we exclusively used the observed value (cf. Ta-
ble 1), but we know there is an observational tolerance in this
parameter, while, if other things remain equal, L(:)R2(:)Ṁ 2.
This proportionality is so obvious that it did not appear nec-
essary to play around with L, but in drawing conclusions the
L-dependence should be kept in mind.

In trial calculations we also found rapidly that the input
value of Ṁ does not influence the results as long as the input
value remains below logṀ<-2.5. This can be understood be-
cause the way Ṁ enters in the calculations is that it determines
the gradient of vwind. Such a gradient could introduce a contri-
bution to the resulting value of ζµ, but we found this not to be
the case for ρCas. For this star this result stands at variance with
claims that the observed high microturbulent velocities would
be due to the gradient in the stellar wind velocity; cf. Lamers
& Achmad (1994). We think that their claim is due to the fact
that in their study use was made of fictitious lines that originate
in the stellar wind, where the relatively strong wind gradient
may indeed simulate turbulent line broadening. The observed
microturbulent velocities, used in our study (data that were also
referred to by Lamers & Achmad), are all derived from spectral
lines that are formed in the photosphere in the range of levels ap-
proximately defined by the contribution function, shown in Fig.
6. At that level the density is sufficiently high to have vwind≈0.

We also found that there is no large variation possible in the
input value of geff ; its value should be chosen only little (i.e.
'0.1) below the required (observational) value, which means
that the shock wave field only slightly contributes to the effective
acceleration.

The input value of Teff should be chosen some 100 to 300 K
below the desired (observational) value. This is so, because the
many hotter regions behind the shocks enhance the calculated
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Table 2. Course of iteration; log(L/L�)=5.7 and logṀ=-6

Teff,in geff,in M1,max Teff,out geff,out ζµ vhydr logṀ
(K) (K) (km s−1) (km s−1) (M� y−1)
6800 2.65 1.07 6930 2.65 11.7 0.6 -4.49
6825 2.70 1.07 7110 2.82 11.7 0.5 -4.70
6830 2.68 1.06 6890 2.80 11.9 0.5 -4.72
6920 2.68 1.06 7150 2.86 11.7 0.4 -4.89

flux and thus we may end up with a shocked photosphere with
a somewhat higher effective temperature than the input value.

The only parameter that is really ’free’ is the remaining one:
M1,max.

To show the course of the iterations we present in Table 2
the results of some trial calculations. The table gives the three
input values: Teff , geff and M1,max. We took in all calculations
log (L/L�)=5.7 (as in Table 1) and log Ṁ=-6, an arbitrary but
unimportant choise.

The gratifying result is that it appears indeed possible to re-
produce the observed values for the rate of mass loss as well as
that of the high supersonic microturbulent velocity component,
the latter being a value that has always surprised observers.
These results are obtained by assuming a spectrum of weak
shock waves, defined by a largest Mach number M1,max=1.06
to 1.07. The real hydrodynamical component of the motion field
(= the fluctuations in v) is small, of the order of 0.4 to 0.6 km
s−1 only. This result is compatible with current expectations: in
Kurucz’s models for stars like ρ Cas one would expect a maxi-
mum convective velocity of '1 km s−1 (cf. Kurucz 1996). The
hydrodynamical turbulence is expected to originate in the lower
situated convection layer. The observed ’microturbulence’ of 11
km s−1 would be fully incompatible with this maximum veloc-
ity, but the hydrodynamical component derived in this paper,
agrees with it.

Another aspect is that repeated calculations for one unique
set of input values yield different output data. This is because
of the introduction of random phases φ in the spectrum of tur-
bulence (Eq. (9)). Physically, this is correct, because also in a
stellar atmosphere this would be the case: there is randomness
in any spectrum of turbulent motions. For this reason it is not
sufficient to end the calculation with one seemingly aggreeing
set of input parameters. There is a natural spreading in the output
data, which should be determined by a number of calculations
with the same set of input parameters. An example is shown in
Table 3, where such a set is reproduced. From a larger number
of such calculations it was found that the scatter in ζµ and in
logṀ is 0.1 km s−1 and 0.07, respectively.

10. Calculated Hα line profile from a shocked atmosphere

Spectral observations ofρCas occasionally show emission com-
ponents of the subordinate line Hα and of strong resonance lines
like those of Ca ii. These emission peaks often show a blueward
displacement by some 10 km s−1. In addition, the central part

Table 3. Integrations for a unique set of input data

Teff,in geff,in M1,max Teff,out geff,out ζµ vhydr logṀ
(K) (K) (km s−1) (km s−1) (M� y−1)
6910 2.63 1.06 7420 2.72 11.9 0.5 -4.80
ditto ditto ditto 7160 2.67 11.9 0.5 -4.69
ditto ditto ditto 7270 2.70 12.0 0.5 -4.91

of the line profile can at times be partly or wholly filled-in by
emission.

We think that these aspects can be reconciled by the proper-
ties of a shocked atmosphere. The existence of many hot sheets
behind the shocks may imply the appearance of emission com-
ponents in the spectrum. To investigate this aspect, we have
calculated a Hα line profile for two shocked atmospheres char-
acterized by Teff=6991 K and geff=2.85, and by Teff=7197 K
and geff=2.9.

Input data for the calculations are the shocked models with
the fluctuations of the temperature, electron density, mass den-
sity and velocity, all as functions of logm, where m is the mass
above the layer of reference.

To perform the non-LTE calculations use was made of cou-
pled equations of radiative transfer and of statistical equilib-
rium, according to a method that has been described earlier by
Scharmer & Carlsson (1985). We used a computer code de-
scribed by Carlsson (1986). The atmospheric model was ap-
proximated by a - slightly smoothed - model. Smoothing was
done in order to make the calculations not too cumbersome and
primarily to overcome convergence problems.

The theoretical results are given in Fig. 8, and compared
with three observed profiles. The comparison shows that the
greatly variable aspect of the observed line profile is qualita-
tively reproduced by the calculations. The significant difference
between the two calculated line profiles is in part due to the dif-
ferent input values of Teff , but for another part it reflects the
stochastically variable character of the shock-wave field. This
is in our feeling an interesting new aspect, worthwhile a study in
more depth. We think to have shown by these trial calculations
that an atmosphere permeated by shocks, even by weak ones,
can yield drastic changes in the emergent Hα profile, particu-
larly when also the stellar temperature is changing. The shocked
atmosphere apparently succeeds in explaining the strong vari-
ations in the profile. However, the asymmetry of the observed
Hα profile is not reproduced by the calculations.

For the time being we tentatively conclude that the general
appearance and the strong variability of the Hα line profile could
be caused by a system of weak shocks in the atmosphere.

11. Conclusions

Among the various remarkable aspects of the hypergiant ρ Cas
there are three that we try to explain in this paper: its supersonic
microturbulent velocity component, its fairly large rate of mass
loss, and the variable appearance of the profile of Hα. We based
our analysis on the feature that a system of hydrodynamic mo-
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Fig. 8. Calculated and observed line profiles of Hα. The calculated
profile (upper panel; abscissa is velocity in km s−1) is for two in-
put models, defined by: Teff =6991 K and geff =2.85; Teff =7197 K and
geff =2.9; while also the variations in the outward velocity component
have been taken into account. The observations (lower panel; abscissa:
Å) are (thick solid line): Nov. 30 ’91, courtesy O.R. Stahl; (thin solid
line): La Palma Observatory, Dec. 21 ’93 and (dashed line): La Palma
Observatory, July 25 ’94.

tions in the atmosphere of a star with a sufficiently extended
atmosphere, such as ρ Cas, is likely to develop into a system of
shock waves. We have assumed that these shock waves follow
a Kolmogoroff spectrum of turbulence, defined by the maxi-
mum Mach number M1,max in front of the shocks and we have
examined the consequences of this assumption. These shocks
produce a net mass outflow component, hence they initiate mass
loss. The rate of mass loss can be calculated when the velocity-
and density-distributions in the shocked atmosphere are known.
Furthermore, it appears that in a shocked atmosphere there is
not only a quasi-stochastic distribution of velocities, but also
of the temperature, the latter being due to the high-temperature
sheets behind shocks. Both have their influence on the resulting
microturbulent velocity component, but the latter much more
than the former.

Calculations show that a maximum shock strength
M1,max=1.06 to 1.08 appears to be fully capable of describ-
ing the observed rate of mass loss (10−5 M�y−1) and the su-
personic value for the microturbulent velocity component (11
km s−1), while we find at the same time that the purely hy-
drodynamic component of shock-wave microturbulence is only
∼0.5 km s−1, which is a much more reasonable value than the
extreme values found when taking the spectral data at their face
values. Microturbulence has often been called a ’fudge factor’
but such a qualification does not advance the physical under-
standing. We here claim that the observed ’microturbulent’ line
broadening is not caused by stochastic small-scale turbulent
motions (the classical notion of microturbulence) but by the
thermal motions in stochastically distributed high-temperature
sheets behind the many shocks.

Another result of this study is that the accumulation of high-
temperature sheets behind the many atmospheric shocks pro-
duces many relatively hot sheets, particularly in the outer layers
of the star (in deeper layers shocks do not so much lead to the
appearance of hot sheets because the shock heating is used for
ionizing the atmosphere behind the shocks, with small or zero
temperature enhancements). A non-LTE calculation of the ex-
pected profile of Hα shows that a shocked atmosphere is indeed
able to simulate the strongly variable displaced emission com-
ponents.

Finally, we have to refer to the approximations included in
the analysis. Most of them have been mentioned in passing. We
list them again:

We calculated the values ofTeff assuming a gray atmosphere
(κ independent of wavelength); we have however tried to com-
pensate that approximation by a strictly differential approach.

The accumulation of the wakes of shocks and its influence
on the temperature structure of the atmosphere was handled in
a first-order way. More refined methods can be thought of.

The calculation of the ’standard’ v- and logρ-profiles in the
shocks, as described in Sect. 3, was done assuming an isothermal
situation, while we know that the gas behind the shocks is not
isothermal. There exist refined, but cumbersome methods for
calculating the velocity and density profiles behind shocks, but
for reducing computer time we did not want to use them in the
present study.

We did not include the effect of pulsations, while recent
observations suggest a certain degree of correlation between
strong pulsations and periods of enhanced mass loss.
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