Semi-empiric Radiative Transfer Modeling of FUSE Stellar Spectra

A. Lobel¹, E. H. Avrett¹, and J. P. Aufdenberg²

¹Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge 02138 MA, USA

²National Optical Astronomy Observatory, P.O. Box 26732, Tucson, 85726 AZ, USA

Abstract. We present an overview of radiative transfer modeling efforts to interpret spectra of a variety of stellar objects observed with *FUSE*. Detailed radiative transfer modeling of high ion emission line profiles of C III and O VI observed in the far-UV spectrum, provides a powerful means to probe the thermal and dynamic properties of high-temperature plasmas in the atmospheres of stars. We model asymmetric emission lines of C III λ 977 (and Mg II h & k) observed in spectra of luminous cool stars such as α Aqr, to infer the wind- and microturbulence velocity structures of the upper chromosphere. Semi-empiric radiative transfer models that include transition region temperature conditions, are further developed based on detailed fits to O VI resonance emission lines in the supergiant α Aqr, the classical Cepheid variable β Dor, and to self-absorbed O VI emission lines in the cataclysmic variable SW UMa.

We observe that the C III resonance line profile of α Aqr assumes a remarkable asymmetric shape, reminiscent of P Cygni type profiles observed in hot luminous supergiants. The model calculations indicate outflow velocities above ~140 km s⁻¹ at kinetic temperatures of 65 kK and higher. Based on detailed model fits to the narrow red-shifted and self-absorbed O VI emission lines of SW UMa we compute that the gas- and electron density exceed the density conditions of the upper solar transition region by about three orders of magnitude. We propose that the large gas density of $\rho \simeq 1.4 \ 10^{-11} \ \text{g cm}^{-3}$ favors a region of warm dense plasma of 100 kK $\leq T_{\text{gas}} \leq 300 \ \text{kK}$ that collapses onto the white dwarf with a mass accretion rate of $1-2 \ 10^{15} \ \text{g s}^{-1}$ above or between the accretion disk. We discuss how detailed semi-empiric fits to emission lines observed with the high spectral resolution of *FUSE* can provide reliable constraints on the mass loss or mass accretion rates in these objects.

1. FUSE Observations and Detailed Radiative Transfer Modeling

We present a comparative study of transition region (TR) wind dynamics in α Aqr (G2 Ib), SW UMa (CV), β Dor (F-G Ia-Iab) and the Sun, to develop semiempiric radiative transfer models of the thermal structure of the stellar chromosphere and TR, and to determine the velocity and electron density structures. *FUSE* spectra of the hybrid supergiant α Aqr have been observed for Science Team Program P218 (Dupree et al. 2005). The classical δ -Cepheid variable β Dor was observed in Aug. and Oct. 2003 for GI-D107 (PI A. Lobel), while the dwarf nova SW UMa was observed in Nov. 2001 for GI-B074. The left-hand panel of Fig. 1 shows non-LTE radiative transfer fits to C III λ 977 through a

Figure 1. Radiative transfer best fit (*solid line*) to C III λ 977 in α Aqr.

semi-empiric model of the chromosphere and lower TR of α Aqr. The outward decrease of ρ (panels right) produces a scattering core in the computed emission profile (Lobel & Dupree 2000; 2001), which assumes an asymmetric shape due to opacity in a fast accelerating wind. Best multi-level atom model fits are obtained for V_{wind}>140 km s⁻¹ in the lower TR ($T\simeq 65$ kK), which strongly scatters the blue emission line wing. The model signals a supersonic optically thick warm wind in the outer atmosphere of this hybrid supergiant (Lobel & Dupree 2002).

The left-hand panels of Fig. 2 show O VI lines in the cataclysmic variable SW UMa. The lines are remarkably far red-shifted with respect to heliocentric rest. We suggest that the double-peaked narrow profiles result from self-absorbed emission line formation in an infalling region near the white dwarf that is sufficiently optically thick at $T_{\rm gas}$ between 100 kK and 300 kK (*panels right*). The depth of the O VI λ 1032 central absorption line core can only be computed with electron densities N_e at least 1100 times larger compared to the solar TR values.

Figure 2. Best fit (long-dash dotted line) to O VI $\lambda 1032$ & $\lambda 1037$ in SW UMa.

Figure 3. Best fit to solar O VI (upper left panel) emission compared to β Dor.

The downflow velocity (V_{wind}) in the model is computed from the conservation of total mass in spherical geometry with $\dot{M} = 4 \pi \rho(r) V_{\text{wind}}(r) (r + R_{\text{WD}})^2$, using a mass accretion rate \dot{M} of 1 10¹⁵ g s⁻¹, and $R_{\text{WD}}=0.01 \text{ R}_{\odot}$. This \dot{M} -value provides the best fit to the wavelength position of the central self-absorption core where $V_{\text{wind}}=+70$ to $+65 \text{ km s}^{-1}$ in the O VI lines formation region.

The upper left-hand panel of Fig. 3 compares the O VI lines we compute with an atmospheric model of the average quiet Sun with SOHO-SUMER observations (solid dots). The lines form over a rather small region of ~10 model layers with 100 kK $\leq T_{\rm gas} \leq 300$ kK, or ~200 km into the solar TR above the upper chromosphere (panels right). A best fit to the FWHM and equivalent width of the lines is obtained with projected microturbulence velocities ($V_{\rm turb}$) increasing from at least ~30 km s⁻¹ to ~39 km s⁻¹ over this thermal range (Warren et al. 1997). A best fit to the core position of the O VI λ 1032 line is computed with a mean downflow velocity of +5 km s⁻¹. Preliminary atmosphere models for β Dor (lower left panel) require $V_{\rm turb}$ exceeding 40 km s⁻¹ in the O VI lines formation region to match the large line widths we also observe in α Aqr.

Acknowledgments. Financial support for this research has been provided by NASA *FUSE* grants GI-D107 and GI-E068.

References

- Dupree, A. K., Lobel, A., Young, P. R., Ake, T. B., Linsky, J. L., & Redfield S., 2005, ApJ, submitted
- Lobel, A., & Dupree, A. K. 2000, ApJ, 545, 454
- Lobel, A., & Dupree, A. K. 2001, ApJ, 558, 815
- Lobel, A., & Dupree, A. K. 2002, *FUSE* Science and Data Workshop, March 2002, Abstract Poster Talk, p. 60
- Warren, H. P., Mariska, T. J., Wilhelm, K., & Lemaire, P. 1997, ApJ, 484, L91