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Summary

We present spatially resolved spectra observed with the Space
Telescope Imaging Spectrograph on the Hubble Space Telescope
of the upper chromosphere and dust envelope of a Orionis (M2
lab). In the fall of 2002 a set of five high-resolution near-UV spec-
tra was obtained by scanning at intensity peak-up position and four
off-limb target positions up to one arcsecond, using a small aper-
ture (200 by 63 mas) to investigate the thermal conditions and flow
dynamics in the outer atmosphere of this important nearby cool su-
pergiant star.

Based on Mg Il k & k, Fe 11, C 11, and Al 11 emission lines
we provide the first evidence for the presence of warm chromo-
spheric plasma at least 1 arcsec away from the star at ~40 R.
(1 R.~700 Rg). The STIS spectra reveal that Betelgeuse’s upper
chromosphere extends far beyond the circumstellar Ha envelope
of ~5 R,, determined from previous ground-based imaging.

The flux in the broad and self-absorbed resonance lines of
Mg 11 decreases by a factor of ~700 compared to the flux at chro-
mospheric disk center. We observe strong asymmetry changes in
the Mg 11 & and Si 1 line profiles when scanning off-limb, signaling
outward acceleration of gas outflow in the upper chromosphere

From the radial intensity distributions of Fe 1 and Fe 11 emission
lines we determine the radial non-LTE iron ionization balance. We
compute that the local kinetic gas temperatures of the warm chro-
mospheric gas component in the outer atmosphere exceed 2600 K
when assuming local gas densities of the cool gas component, de-
termined from our radiative transfer models that fit the 9.7 um sil-
icate dust emission feature. The spatially resolved STIS spectra
directly demonstrate that warm chromospheric plasma co-exisists
with cool gas in Betelgeuse's circumstellar dust envelope

This reseach is based on data obtained with the NASA/ESA Hubble Space Telescope, collected at
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grant HST-GO-09369.01 to the Smithsonian Astrophysical Observaory.

3. Mg 1l k & h line profile changes

The right-hand figure shows the detailed pro-
files of the Mg 11 b & k lines observed up to
1000 mas. The emission line intensities de-
crease by a factor of ~700 from chromospheric 7
disk center (TP 0) to 1". These optically thick
chromospheric lines show remarkable changes
of their detailed shapes when scanning off-limb.
The full width across both emission compo-
nents at half intensity maximum decreases by
~20%, while the broad and saturated central *
absorption core narrows by more than 50%.
Beyond 600 mas the central core assumes a
constant width which results from absorption
contributions by the local interstellar medium
(d«~132 pc). We observe a strong increase of
the (relative) intensity of the long-wavelength
emission component in both lines beyond 200
mas. It signals fast wind acceleration beyond
this radius. Note that the short-wavelength emis-
sion components of the k£ and h lines are blended
with chomospheric Mn 1 lines (decreasing the
k- and increasing the h-component), but that
become much weaker in the outer chromosphere.
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7. Radial Non-LTE Iron lonization Balance
In the upper panel of the right-hand fi gure we
compute the iron ionization fraction from the
I(r) of the Fe 1 and Fe 11 lines. The intersec-

tion of the curves (at dots) provides the ex-
citation temperature corresponding to the ob-

served line intensity ratios for spontaneous emis-
sion. We compute iron ionization fractions be-
tween 99.3% and 99.7% for kinetic gas tem-
peratures between 2600 K and 5800 K, us-
ing local gas densities 10717<p<10~15 grem =3

(lower panel). This temperature range corre-

sponds to partial NLTE iron ionization due to

a diluted radiation fi eld with 77,4~3000 K (full
drawn lines), typical for the outer chromosphere.

The graphs are computed with volume filling

factors ¢ for warm plasma of 5% (dots) and

30% (triangles). Hydrogen is almost neutral for

these conditions in the upper chromosphere.

We model the circumstellar dust envelope (CDE)
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1. STIS Observations

STIS spectra of the red supergiant « Ori
have been observed for GO 9369 in HST
Cycle 11; A direct Test for Dust-driven Wind
Physics. This program investigates the de-
tailed acceleration mechanisms of wind out-
flow in the outer atmospheres (chromosphere
and dust envelope) of cool stars. Using the
exceptional capabilities of HST-STIS we ob-
serve the UV spectrum with A/AA~33,000
between 2275 A and 3180 A with spatially
resolved scans across the chromospheric
disk at 0, 200, 400, 600, & 1000 mas (Visit
1), at 0 & 2000 mas (Visit 2), and at 0 &
3000 mas (Visit 3). We presently discuss
the spectra observed in fall 2002 of Visit 1.
The spectra of Visits 2 & 3 of spring 2003
will be presented later. Exposure times range
from 500 s at 200 mas to 7200 s at 1, yield-
ing good S/N>20. The spectra are cali-
brated with CALSTIS v2.12 using the most
recently updated calibration reference files.
Wavelength calibration accuracies are bet-
ter than ~1 detector pixel or 1.3 kms !

2. Si 1 A2516 line profile changes

In previous work we modeled the detailed shape

of the Si 1 A2516 resonance emission line (Lo-
bel & Dupree 2001, ApJ 558, 815). The line
has previously been observed by scanning over
the inner chromosphere at 0, 25, 50, and 75
mas, using a slit size of 100 x 30 mas. The
right-hand fi gure shows the Si | line profiles
and the respective slit positions compared to

the near-UV continuum (in false colors) observed

with HST-FOC. The double-peaked line pro-
fi les across the inner chromosphere were ob-
served in March 1999. The central (self-) ab-
sorption core results from scattering opacity
in the chromosphere. The asymmetry of the

emission component intensities probes the chro-

mospheric fow dynamics in our line of sight.

The spectra of GO 9369 are observed across
the outer chromosphere using a slitsize of 200
X 63 mas. These profiles appear red-shifted
with a rather weak short-wavelength emission
component. It signals substantial wind outfbw

opacity in the upper chromoshere, which fastly
accelerates beyond 200 mas (~8.1 R.).
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5. lon lines in the Upper Chromosphere
We also observe ion lines of Fe 11, Al 11, and
C 11 out to 1" in the upper chromosphere. The
left-hand figure shows (scaled) emission lines
of Fe 11 \2716 (UV 62), Al 11 | A2669 (UV 1),
and C 11 A2327 (UV 1). The Fe 1 A2823 (UV
44) line is also shown for comparison (top pan-
els). The lines at the inner chromosphere are
observed in April 1998 (thin drawn lines) with
R~114,000 at TPs 0, 63, and 126 mas, while
the lines of the outer chromosphere are ob-
served with medium resolution in fall 2002 (boldly
drawn lines). Both raster scans are however
observed with the same slitsize of 200 x 63
mas so that the line intensity changes can be
compared. For this purpose we select unblended
lines without central self-absorption cores that
become sufficiently optically thin in the outer
chromosphere, and that are significantly ob-
served against the local background noise level.
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6. Radial Intensity Distribution of lon Lines
We wavelength integrate the selected chro-
mospheric emission lines and the Mg 11 lines
beyond the line wings. Their radial intensity
distributions I(r) are compared in the right-hand
fi gure. The intensity errorbars are derived from
the STIS pipeline fux calibration errors, while
the radius errorbars are derived from the pro-
jected slitwidth. We observe that the I(r) of op-
tically thin emission from neutral and ion lines
are very similar across the chromosphere. Neu-
tral emission lines are generally observed far-
ther out with larger S/N compared to the ion
lines, but their I(r) do not differ signifi cantly within
the errors. We fi nd a best fi t for I(r)=~const x 2.
The I(r) of the optically thick and self-absorbed
Mg 1 lines differs signifi cantly with I(r)~const
x r=27, The steeper intensity distribution sig-
nals important radiative transfer effects for the
shapes of the stronger Mg 11 lines (see 3).
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. Wind Acceleration in the Upper Chromosphere

The left-hand fi gure compares the profi les of
the Si1 A2516 and 22507 resonance lines (ver-
tical dotted lines are drawn at stellar rest ve-
locity). Both lines share a common upper en-
ergy level and their intensities are infuenced
by pumping through a fuoresced Fe 1 line.
The self-absorption cores of the Si I lines are
therefore observed far out, into the upper chro-
mosphere. The shape of these unsaturated
emission lines is strongly opacity sensitive to
the local chromospheric velocity field. As for
the Mg 11 lines, the outward decreasing inten-
sity of the short-wavelength emission compo-
nent signals fast acceleration of chromospheric
outfbw in the upper chromosphere. We also
observe this decrease for the resonance line
of Mg | A2852 (not shown). Our previous ra-
diative transfer modeling work based on Si |
revealed that « Ori's inner chromosphere os-
cillates non-radially, with simultaneous up- and
downfows in Sept 1998. Radiative transfer
modeling to determine the detailed wind struc-
ture in the outer chromosphere is underway.
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with radiative transfer in spherical geometry us-
ing DUSTY. A best fi t to the IRAS silicate dust
emission feature at 9.7 um yields a dust con-
densation radius of R.~573 mas, where pgas~5
10716 grem=3 for the cool ambient gas, with
temperatures below Ty,;<600 K (lower pan-
els). The upper panel shows the temperature
structure for warm chromospheric plasma com-
puted at this pgas With ¢= 1% and 100% (solid
red lines). The inner chromosphere is computed
with radiative transfer fi ts to Ha (Lobel & Dupree
2000, ApJ 545, 454). We find that tempera-
tures of the warm chromospheric plasma can-
not decrease to below 2600 K in the CDE. Hence
warm chromospheric plasma must co-exisit with
cool gas of <600 K beyond 600 mas.
Conclusions
Warm chromospheric plasma seen at 40 R..

It must co-exist with cool gas of dust envelope.
Outer chromosphere shows wind acceleration.



